963 resultados para Belone belone, number per class of length
Resumo:
The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrodinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A Lagrangian based heuristic is proposed for many-to-many assignment problems taking into account capacity limits for task and agents. A modified Lagrangian bound studied earlier by the authors is presented and a greedy heuristic is then applied to get a feasible Lagrangian-based solution. The latter is also used to speed up the subgradient scheme to solve the modified Lagrangian dual problem. A numerical study is presented to demonstrate the efficiency of the proposed approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a different class of quantum-mechanical potentials. These are midway between the exactly solvable potentials and the quasiexactly ones. Their fundamental feature is that one can find the entire s-wave spectrum of a given potential, provided that some of its parameters are conveniently fixed. © 1993 The American Physical Society.
Resumo:
Recently a class of quantum-mechanical potentials was presented that is characterized by the fact that they are exactly solvable only when some of their parameters are fixed to a convenient value, so they were christened as conditionally exactly solvable potentials. Here we intend to expand this class by introducing examples in two dimensions. As a byproduct of our search, we found also another exactly solvable potential. © 1994 The American Physical Society.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral (PI) controllers for a class of time delay systems. We extend results of the polynomial case to quasipolynomials using the property of interlacing in high frequencies of the class of time delay systems considered. A signature for the quasipolynomials in this class is derived and used in the proposed approach which yields the complete set of the stabilizing PI controllers.
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results for the design of proportional plus integral plus derivative (PID) controllers concerning a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. © 2005 IEEE.
Resumo:
PURPOSE
Resumo:
The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS.