924 resultados para Autonomic Neuropathy
Resumo:
1 The effect of chronic morphine treatment (CMT) on sympathetic innervation of the mouse vas deferens and on alpha (2)-adrenoceptor mediated autoinhibition has been examined using intracellular recording of excitatory junction potentials (EJPs) and histochemistry. 2 In chronically saline treated (CST) preparations. morphine (1 muM) and the alpha (2)-adrenoceptor agonist (clonidine, 1 muM) decreased the mean amplitude of EJPs evoked with 0.03 Hz stimulation by 81+/-8% (n=16) and 92+/-6% (n=7) respectively. In CMT preparations, morphine (1 muM) and clonidine (1 muM) decreased mean EJP amplitude by 68+/-8% (n = 7) and 79+/-8% (n = 7) respectively. 3 When stimulating the sympathetic axons at 0.03 Hz. the mean EJP amplitude recorded from smooth muscles acutely withdrawn from CMT was four times greater than for CST smooth muscles (40.7+/-3.8 mV, n = 7 compared with 9.9+/-0.3 mV, n = 7). 4 Part of the increase in mean EJP amplitude following CMT was produced by a 31% increase in the density of sympathetic axons and varicosities innervating the smooth muscle. 5 Results from the present study indicate that the effectiveness of alpha (2)-adrenocrptor mediated autoinhibition is only slightly reduced in CMT preparations. Most of the cross tolerance which develops between morphine, clonidine and alpha (2)-adrenoceptor mediated autoinhibition occurs as a consequence of increased efficacy of neuromuscular transmission which is produced by an increase in the probability of transmitter release and an increase in the density of sympathetic innervation.
Resumo:
P2X(1)-type purinoceptors, have been shown to mediate fast transmission between sympathetic varicosities and smooth muscle cells in the mouse vas deferens but the spatial organization of these receptors on the smooth muscle cells remains inconclusive. Voltage clamp techniques were used to estimate the amplitudes of spontaneous excitatory junction currents (SEJCs) in cells of the vas deferens longitudinal smooth muscle layer. These currents involved the activation of about 6% of the P2X-type channels present on the cell, as compared to whole cell currents produced when isolated smooth muscle cells were exposed to maximal concentrations of either ATP or alpha,beta -MeATP. Immunofluorescence staining of the vas deferens with antibodies against P2X(1) receptor showed a diffuse, grainy distribution over the entire membrane of each smooth muscle cell. Anti-P2X(1) staining was not markedly clustered beneath anti-SV2-stained sympathetic varicosities. Similar results were obtained for cells in the urinary bladder. During development, P2X(1) mRNA was detected as early as embryonic day 15 (E15). Increasing intensities of diffuse immunostaining for P2X(1) were observed in the walls of the bladder, tail artery, and aorta from E15 until 6 weeks postnatal. The vas deferens showed increasing intensities of diffuse staining of its smooth muscle layers between 2 and 6 weeks postnatal, consistent with the time-course of development of fast purinergic transmission described previously. Together, the results suggest that the response of smooth muscle of the vas deferens to ATP released from sympathetic varicosities relies on rapidly desensitizing P2X(1) receptors, distributed diffusely across the smooth muscle cell surface. Synapse 42:1-11, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The hyperpolarization-activated nonselective cation current, I-h, was investigated in neonatal and adult rat intracardiac neurons. I-h was observed in all neurons studied and displayed slow time-dependent rectification. I-h was isolated by blockade with external Cs+ (2 mM) and was inhibited irreversibly by the bradycardic agent, ZD 7288. Current density of I-h was approximately twofold greater in neurons from neonatal (-4.1 pA/pF at -130 mV) as compared with adult (-2.3 pA/pF) rats; however, the reversal potential and activation parameters were unchanged. The reversal potential and amplitude of I-h was sensitive to changes in external Na+ and K+ concentrations. An inwardly rectifying K+ current, I-K(IR), was also present in intracardiac neurons from adult but not neonatal rats and was blocked by extracellular Ba2+. I-K(IR) was present in approximately one-third of the adult intracardiac neurons studied, with a current density of -0.6 pA/pF at -130 mV. I-K(IR) displayed rapid activation kinetics and no time-dependent rectification consistent with the rapidly activating, inward K+ rectifier described in other mammalian autonomic neurons. I-K(IR) was sensitive to changes in external K+, whereby raising the external K+ concentration from 3 to 15 mM shifted the reversal potential by approximately +36 mV. Substitution of external Na+ had no effect on the reversal potential or amplitude of I-K(IR). I-K(IR) density increases as a function of postnatal development in a population of rat intracardiac neurons, which together with a concomitant decrease in I-h may contribute to changes in the modulation of neuronal excitability in adult versus neonatal rat intracardiac ganglia.
Resumo:
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.
Resumo:
Diabetes mellitus has reached epidemic proportions in many countries and is the most common cause of end stage renal disease (ESRD). The angiotensin II receptor-1 (AT1) antagonists losartan and irbesartan have recently been evaluated as renoprotective agents in large clinical trials of patients with Type 2 diabetes and nephropathy. In the Reduction of End points in Non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist (RENAAL) study, losartan decreased the number of patients reaching the primary end point of a composite of measures of neuropathy. The relative risk reduction was ~ 15% with losartan and this was due to a reduction in both the doubling of creatinine concentration (25%) and of ESRD (28%) but not in death. In the Irbesartan Diabetic Nephropathy Trial (IDNT), the beneficial effect of irbesartan was mainly against the doubling of the baseline creatinine concentration (37% risk reduction) but there was also a 20% reduction in the onset of ESRD. Irbesartan had no effect on mortality. Beneficial effects occurred in addition to blood pressure being controlled by agents other than the AT1 antagonists. These clinical trials suggest that there may be a class renoprotective action with AT1 antagonists, although the mechanism is not clear. Patients with Type 2 diabetes and nephropathy should receive either an AT1 antagonist or the angiotensin converting enzyme inhibitor ramipril to ensure renoprotection.
Resumo:
Although the sympathetic nervous system (SNS) plays a major role in mediating the peripheral stress response, due consideration is not usually given to the effects of prolonged stress on the SNS. The present study examined changes in neurotransmission in the SNS after exposure of mice (BALB/c) to stressful housing conditions. Focal extracellular recording of excitatory junction currents (EJCs) was used as a relative measure of neurotransmitter release from different regions of large surface areas of the mouse vas deferens. Mice were either group housed (control), isolation housed (social deprivation), group housed in a room containing rats (rat odor stress), or isolation housed in a room containing rats (concurrent stress). Social deprivation and concurrent stressors induced an increase of 30 and 335% in EJC amplitude, respectively. The success rate of recording EJCs from sets of varicosities in the concurrent stressor group was greater compared with all other groups. The present study has shown that some common animal housing conditions act as stressors and induce significant changes in sympathetic neurotransmission.
Resumo:
The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Resumo:
We investigated the effects of low ouabain concentrations on systolic (SAP) and diastolic (DAP) arterial pressures and on pressor reactivity in 3-month-old male spontaneously hypertensive rats (SHR). Arterial blood pressure (BP) and pressor reactivity to phenylephrine (PHE) were investigated before and after 0.18 μg/kg ouabain administration (N = 6). The influence of hexamethonium (N = 6), canrenone (N = 6), enalapril (N = 6), and losartan (N = 6) on ouabain actions was evaluated. Ouabain increased BP (SAP: 137 ± 5.1 to 150 ± 4.7; DAP: 93.7 ± 7.7 to 116 ± 3.5 mmHg; P < 0.05) but did not change PHE pressor reactivity. Hexamethonium reduced basal BP in control but not in ouabain-treated rats. However, hexamethonium + ouabain increased DAP sensitivity to PHE. Canrenone did not affect basal BP but blocked ouabain effects on SAP. However, after canrenone + ouabain administration, DAP pressor reactivity to PHE still increased. Enalapril and losartan reduced BP and abolished SAP and DAP responses to ouabain. Enalapril + ouabain reduced DAP reactivity to PHE, while losartan + ouabain reduced SAP and DAP reactivity to PHE. In conclusion, a small dose of ouabain administered to SHR increased BP without altering PHE pressor reactivity. Although the renin-angiotensin system (RAS), Na+ pump and autonomic reflexes are involved in the effects of ouabain on PHE reactivity, central mechanisms might blunt the actions of ouabain on PHE pressor reactivity. The effect of ouabain on SAP seems to depend on the inhibition of both Na+ pump and RAS, whereas the effect on DAP seems to depend only on RAS.
Resumo:
The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex), blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes), and changes in blood-gas composition (chemoreceptor reflex). The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME) in which the interplay of these three reflexes is demonstrable.
Resumo:
The deposition of amyloid fibers at the peripheral nervous system can induce motor neuropathy in Familial Amiloidotic Polyneuropethy (FAP) patients. This produces progressive reductions in functional capacity. The only treatment for FAP is a liver transplant, followed by aggressive medication that can affect patients' metabolism. To our knowledge, there are no data on body fat distribution or comparison between healthy and FAP subjects, which may be important for clinical assessment and management of this disease. PURPOSE: To analyze body fat content and distribution between FAP patients and healthy subjects. METHODS: Body fat content and distribution were measured through Double Energy X-ray Densitometry (DXA) in two groups. Group 1 consisted of 43 Familial Amyloidotic Polyneuropathy patients (19 males, 32 + 8 Yrs, and 24 females, 37 + 5 yrs), who had liver transplant less than 2 months before. Group 2 consisted of 18 healthy subjects of similar age (8 males, 36 + 7 yrs, and 10 females, 39 + 5 yrs). RESULTS: Healthy subjects showed higher values than FAP patients for: BMI (24,2+2,3kg/m2 vs 22,3+3,8 kg/m2 respectively, p<0,05), % trunk BF (26,21+8,34kg vs 20,78+9,05kg respectively, p<0,05), % visceral BF (24,43+7,97% vs 19,21+9,30% respectively, p<0,05), % abdominal BF (26,63+8,51% vs 20,63+10,35% respectively, p<0,05) abdominal subcutaneous BF (0,533+0,421kg vs 0,353+0,257kg respectively, p=0,05), abdominal BF/BF ratio (0,09+0,02 vs 0,08+0,02 respectively, p<0,05) and abdominal BF/trunk BF ratio (0,19+0,03 vs 0,17+0,03 respectively, p<0,05). CONCLUSIONS: These results showed that FAP patients soon after liver transplantation exhibited a healthier body fat profile compared to controls. However, fat content and distribution varied widely in FAP subjects, suggesting an individualized approach for assessment and intervention rather than general guidelines. Future research is needed to investigate the long term consequences on body fat following liver transplant in this population.
Resumo:
The deposition of amyloid fibers at the peripheral nervous system can induce motor neuropathy in Familial Amiloidotic Polyneuropethy (FAP) patients. This produces progressive reductions in functional capacity. The only treatment for FAP is a liver transplant, followed by aggressive medication that can affect patients' metabolism. To our knowledge, there are no data on body fat distribution or comparison between healthy and FAP subjects, which may be important for clinical assessment and management of this disease.
Resumo:
Liver transplantation is the unique treatment for several end-stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fiber mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population.
Resumo:
Familial Amyloidotic Polyneuropathy FAP)- A neurodegenerative disease related with systemic deposition of amyloid fibers mainly at the level of the peripheral nervous system. Clinically, the disease is characterized by an autonomous sensitive-motor neuropathy, beginning nearly always in foot, and subsequently involving the hands. Purpose: Compare the levels of hand grip strength (peak force) in FAP patients with (FAPT) or without (FAPNT) liver transplant and in a healthy group (HG).
Resumo:
As porfirias são um grupo de oito doenças metabólicas raras, em resultado de uma deficiência enzimática em cada uma das oito enzimas envolvidas na biossíntese do grupo heme. São doenças maioritariamente hereditárias, mas podem também ser adquiridas aquando da exposição a certos fatores ambientais e/ou patológicos. Estes fatores externos, denominados de porfirinogénicos também têm um papel preponderante no diagnóstico das porfirias, uma vez que mimetizam os sintomas clínicos de um ataque agudo de porfiria, contribuindo para subestimar esta doença, levando a um atraso no diagnóstico e diminuído o sucesso do prognóstico. Os ataques agudos de porfiria, nomeadamente na porfiria aguda intermitente, porfiria variegata, coproporfiria hereditária, e deficiência da desidratase do ácido delta-aminolevulínico, apesar de serem doenças multissistémicas, têm em comum como apresentação clínica, a dor abdominal aguda. A pesquisa de porfobilinogénio (PBG) na urina, através da realização do teste de Hoesch, é uma forma rápida e fácil de excluir a suspeita clínica de porfiria. Pretendemos com este trabalho, alertar para a necessidade de um diagnóstico laboratorial atempado, que pela sua simplicidade poderá descartar ou confirmar se a dor abdominal aguda, tão frequente nas urgências hospitalares, será ou não uma manifestação clínica de um ataque agudo de porfiria. Este estudo contribuirá não só para aumentar o nosso conhecimento acerca destas doenças, como também permitirá uma melhor compreensão dos mecanismos de patogenicidade das porfirias, o qual ainda permanece pouco conhecido.