948 resultados para Archuby, César Orlando
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
An algorithm to improve the accuracy and stability of rigid-body contact force calculation is presented. The algorithm uses a combination of analytic solutions and numerical methods to solve a spring-damper differential equation typical of a contact model. The solution method employs the recently proposed patch method, which especially suits the spring-damper differential equations. The resulting semi-analytic solution reduces the stiffness of the differential equations, while performing faster than conventional alternatives.
Resumo:
Conventional cameras have limited dynamic range, and as a result vision-based robots cannot effectively view an environment made up of both sunny outdoor areas and darker indoor areas. This paper presents an approach to extend the effective dynamic range of a camera, achieved by changing the exposure level of the camera in real-time to form a sequence of images which collectively cover a wide range of radiance. Individual control algorithms for each image have been developed to maximize the viewable area across the sequence. Spatial discrepancies between images, caused by the moving robot, are improved by a real-time image registration process. The sequence is then combined by merging color and contour information. By integrating these techniques it becomes possible to operate a vision-based robot in wide radiance range scenes.
Resumo:
Starbug is an inexpensive, miniature autonomous underwater vehicle ideal for data collection and ecosystem surveys. Starbug is small enough to be launched by one person without the need for specialised equipment, such as cranes, and it operates with minimal to no human intervention. Starbug was one of the first autonomous underwater vehicles (AUVs) in the world where vision is the primary means of navigation and control. More details of Starbug can be found here: http://www.csiro.au/science/starbug.html
Resumo:
Information security policy defines the governance and implementation strategy for information security in alignment with the corporate risk policy objectives and strategies. Research has established that alignment between corporate concerns may be enhanced when strategies are developed concurrently using the same development process as an integrative relationship is established. Utilizing the corporate risk management framework for security policy management establishes such an integrative relationship between information security and corporate risk management objectives and strategies. There is however limitation in the current literature on presenting a definitive approach that fully integrates security policy management with the corporate risk management framework. This paper presents an approach that adopts a conventional corporate risk management framework for security policy development and management to achieve alignment with the corporate risk policy. A case example is examined to illustrate the alignment achieved in each process step with a security policy structure being consequently derived in the process. It is shown that information security policy management outcomes become both integral drivers and major elements of the corporate-level risk management considerations. Further study should involve assessing the impact of the use of the proposed framework in enhancing alignment as perceived in this paper.
Resumo:
In today's technological age, fraud has become more complicated, and increasingly more difficult to detect, especially when it is collusive in nature. Different fraud surveys showed that the median loss from collusive fraud is much greater than fraud perpetrated by a single person. Despite its prevalence and potentially devastating effects, collusion is commonly overlooked as an organizational risk. Internal auditors often fail to proactively consider collusion in their fraud assessment and detection efforts. In this paper, we consider fraud scenarios with collusion. We present six potentially collusive fraudulent behaviors and show their detection process in an ERP system. We have enhanced our fraud detection framework to utilize aggregation of different sources of logs in order to detect communication and have further enhanced it to render it system-agnostic thus achieving portability and making it generally applicable to all ERP systems.
Resumo:
This paper analyzes effects of different practice task constraints on heart rate (HR) variability during 4v4 smallsided football games. Participants were sixteen football players divided into two age groups (U13, Mean age: 12.4±0.5 yrs; U15: 14.6±0.5). The task consisted of a 4v4 sub-phase without goalkeepers, on a 25x15 m field, of 15 minutes duration with an active recovery period of 6 minutes between each condition. We recorded players’ heart rates using heart rate monitors (Polar Team System, Polar Electro, Kempele, Finland) as scoring mode was manipulated (line goal: scoring by dribbling past an extended line; double goal: scoring in either of two lateral goals; and central goal: scoring only in one goal). Subsequently, %HR reserve was calculated with the Karvonen formula. We performed a time-series analysis of HR for each individual in each condition. Mean data for intra-participant variability showed that autocorrelation function was associated with more short-range dependence processes in the “line goal” condition, compared to other conditions, demonstrating that the “line goal” constraint induced more randomness in HR response. Relative to inter-individual variability, line goal constraints demonstrated lower %CV and %RMSD (U13: 9% and 19%; U15: 10% and 19%) compared with double goal (U13: 12% and 21%; U15: 12% and 21%) and central goal (U13: 14% and 24%; U15: 13% and 24%) task constraints, respectively. Results suggested that line goal constraints imposed more randomness on cardiovascular stimulation of each individual and lower inter-individual variability than double goal and central goal constraints.
Resumo:
Digital forensic examiners often need to identify the type of a file or file fragment based only on the content of the file. Content-based file type identification schemes typically use a byte frequency distribution with statistical machine learning to classify file types. Most algorithms analyze the entire file content to obtain the byte frequency distribution, a technique that is inefficient and time consuming. This paper proposes two techniques for reducing the classification time. The first technique selects a subset of features based on the frequency of occurrence. The second speeds classification by sampling several blocks from the file. Experimental results demonstrate that up to a fifteen-fold reduction in file size analysis time can be achieved with limited impact on accuracy.
Resumo:
This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Using local consistency assumption, the practical stability established is in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Significantly, these practical stability results do not require the approximating model to be of the same model type as the true system. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.
Resumo:
The topic of fault detection and diagnostics (FDD) is studied from the perspective of proactive testing. Unlike most research focus in the diagnosis area in which system outputs are analyzed for diagnosis purposes, in this paper the focus is on the other side of the problem: manipulating system inputs for better diagnosis reasoning. In other words, the question of how diagnostic mechanisms can direct system inputs for better diagnosis analysis is addressed here. It is shown how the problem can be formulated as decision making problem coupled with a Bayesian Network based diagnostic mechanism. The developed mechanism is applied to the problem of supervised testing in HVAC systems.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
The use of adaptive wing/aerofoil designs is being considered as promising techniques in aeronautic/aerospace since they can reduce aircraft emissions, improve aerodynamic performance of manned or unmanned aircraft. The paper investigates the robust design and optimisation for one type of adaptive techniques; Active Flow Control (AFC) bump at transonic flow conditions on a Natural Laminar Flow (NLF) aerofoil designed to increase aerodynamic efficiency (especially high lift to drag ratio). The concept of using Shock Control Bump (SCB) is to control supersonic flow on the suction/pressure side of NLF aerofoil: RAE 5243 that leads to delaying shock occurrence or weakening its strength. Such AFC technique reduces total drag at transonic speeds due to reduction of wave drag. The location of Boundary Layer Transition (BLT) can influence the position the supersonic shock occurrence. The BLT position is an uncertainty in aerodynamic design due to the many factors, such as surface contamination or surface erosion. The paper studies the SCB shape design optimisation using robust Evolutionary Algorithms (EAs) with uncertainty in BLT positions. The optimisation method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. Two test cases are conducted; the first test assumes the BLT is at 45% of chord from the leading edge and the second test considers robust design optimisation for SCB at the variability of BLT positions and lift coefficient. Numerical result shows that the optimisation method coupled to uncertainty design techniques produces Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment
Resumo:
The aim of this study was to determine whether spatiotemporal interactions between footballers and the ball in 1 vs. 1 sub-phases are influenced by their proximity to the goal area. Twelve participants (age 15.3 ± 0.5 years) performed as attackers and defenders in 1 vs. 1 dyads across three field positions: (a) attacking the goal, (b) in midfield, and (c) advancing away from the goal area. In each position, the dribbler was required to move beyond an immediate defender with the ball towards the opposition goal. Interactions of attacker-defender dyads were filmed with player and ball displacement trajectories digitized using manual tracking software. One-way repeated measures analysis of variance was used to examine differences in mean defender-to-ball distance after this value had stabilized. Maximum attacker-to-ball distance was also compared as a function of proximity-to-goal. Significant differences were observed for defender-to-ball distance between locations (a) and (c) at the moment when the defender-to-ball distance had stabilized (a: 1.69 ± 0.64 m; c: 1.15 ± 0.59 m; P < 0.05). Findings indicate that proximity-to-goal influenced the performance of players, particularly when attacking or advancing away from goal areas, providing implications for training design in football. In this study, the task constraints of football revealed subtly different player interactions than observed in previous studies of dyadic systems in basketball and rugby union.