1000 resultados para ATOMIC QUANTUM FLUID


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The arterial pulse pressure variation induced by mechanical ventilation (Delta PP) has been shown to be a predictor of fluid responsiveness. Until now, Delta PP has had to be calculated offline (from a computer recording or a paper printing of the arterial pressure curve), or to be derived from specific cardiac output monitors, limiting the widespread use of this parameter. Recently, a method has been developed for the automatic calculation and real-time monitoring of Delta PP using standard bedside monitors. Whether this method is to predict reliable predictor of fluid responsiveness remains to be determined. METHODS: We conducted a prospective clinical study in 59 mechanically ventilated patients in the postoperative period of cardiac surgery. Patients studied were considered at low risk for complications related to fluid administration (pulmonary artery occlusion pressure <20 mm Hg, left ventricular ejection fraction >= 40%). All patients were instrumented with an arterial line and a pulmonary artery catheter. Cardiac filling pressures and cardiac output were measured before and after intravascular fluid administration (20 mL/kg of lactated Ringer`s solution over 20 min), whereas Delta PP was automatically calculated and continuously monitored. RESULTS: Fluid administration increased cardiac output by at least 15% in 39 patients (66% = responders). Before fluid administration, responders and nonresponders were comparable with regard to right atrial and pulmonary artery occlusion pressures. In contrast, Delta PP was significantly greater in responders than in nonresponders, (17% +/- 3% vs 9% +/- 2%, P < 0.001). The Delta PP cut-off value of 12% allowed identification of responders with a sensitivity of 97% and a specificity of 95%. CONCLUSION: Automatic real-time monitoring of Delta PP is possible using a standard bedside rnonitor and was found to be a reliable method to predict fluid responsiveness after cardiac surgery. Additional studies are needed to determine if this technique can be used to avoid the complications of fluid administration in high-risk patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzes the relationship between extracellular purines and pain perception in humans. Cerebrospinal fluid (CSF) levels of purines and their metabolites were compared between patients displaying acute and/or chronic pain syndromes and control subjects. The CSF levels of IMP, inosine, guanosine and uric acid were significantly increased in the chronic pain group and correlated with pain severity (P<0.05). Patients displaying both chronic and acute pain presented similar changes in the CSF purines concentration (P<0.05). However, in the acute pain group, only CSF inosine and uric acid levels were significantly increased (P<0.05). These findings suggest that purines, in special inosine, guanosine and uric acid, are associated with the spinal mechanisms underlying nociception. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general prescription for the construction of integrable one-dimensional systems with closed boundary conditions and quantum supersymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Several factors have been implicated in the high-mortality rate of posttraumatic pneumonectomy. In this study, we evaluated the hemodynamic and echocardiographic changes induced by pneumonectomy and fluid resuscitation after hemorrhagic shock. Methods: Fourteen dogs were bled to a target mean arterial pressure of 40 mmHg. The animals were assigned to two groups: control (no fluid resuscitation) and lactated Ringer`s (3 x shed blood volume). The left pulmonary hilum was cross clamped, and the animals were observed for 60 minutes. Systemic hemodynamics was evaluated using Swan-Ganz, arterial catheter, and ultrasonic flow probe. Systemic O(2)-derived variables were calculated. Ejection fraction was determined by two-dimensional echocardiography. Results: Fluid resuscitation improved the mean arterial pressure and systemic oxygen delivery. After pneumonectomy, no significant increase in right ventricular pressure was observed in the LR group. No signs of major ventricular dilation or changes in arterial oxygenation were observed. Conclusion: Our data suggest that pneumonectomy is not associated with early pulmonary hypertension; gentle fluid resuscitation improves cardiovascular performance and is not associated with an increase in right ventricular pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules L-h(g) of the quantized enveloping algebras U-h(g). On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra g an abstract quantum Lie algebra g(h) independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras L-h(g) are isomorphic to an abstract quantum Lie algebra g(h). In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras L-h(g) associated to the same g are isomorphic, 2) the quantum Lie product of any Ch(B) is q-antisymmetric. We also describe a construction of L-h(g) which establishes their existence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a general model of fiber optics, we investigate the physical limits of soliton-based terabaud communication systems. In particular we consider Raman and initial quantum noise effects which are often neglected in fiber communications. Simulations of the position diffusion in dark and bright solitons show that these effects become increasingly important at short pulse durations, even over kilometer-scale distances. We also obtain an approximate analytic theory in agreement with numerical simulations, which shows that the Raman effects exceed the Gordon-Haus jitter for sub-picosecond pulses. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.