943 resultados para AL-ALLOY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H-2 at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been investigated in the transverse direction, i.e., the plane containing random fibre orientation was perpendicular to the loading direction, in the temperature range of 175-300 degrees C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. Normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at 175 degrees C at all the stresses employed, and up to 80 MPa stress at 240 degrees C. A reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and then decreasing, is observed above 80 MPa stress at 240 degrees C and at all the stress levels at 300 degrees C. This pattern remains the same for all the composites employed. The reverse creep behaviour is found to be associated with fibre breakage. The apparent stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the true stress exponent is found to range between 4 and 7, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Q(C) was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres alone at all the temperatures and stress levels investigated. The creep rate of the composites in the transverse direction is found to be higher than the creep rate in the longitudinal direction reported in a previous paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The participation of aluminum in the decomposition reaction of ammonium perchlorate (AP) is enhanced if magnesium is added—either as a mixture of Al and Mg powders or as an alloy of Mg in Al. The differential thermal analyses of the compositions show a sensitization in the temperatures of decomposition, as well as increase in the heat of reaction. The AP-Mg and Ap-(Mg---Li) alloy pellets also show increased reactivity. The burning rates of AP-(Al-10% Mg) alloy pellets increase with increase in the alloy content, while calorimetric values peak at 40% alloy content. The combustion product gases of AP-40% (Al-10% Mg) alloy contain large quantities of hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure and temperature dependence of the electrical resistivity of amorphous Ga20Te80 alloy is reported for the first time. The alloy undergoes a pressure induced amorphous semiconductor-to-crystalline metal phase transition at 6.5 ± 0.5 GPa. The high pressure crystalline phase is a mixture of Te and GaTe3 phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vapour species effusing from a magnesia Knudsen cell containing Mg-Zn alloy at 923 K were condensed on a water cooled copper plate. The equilibrium composition of the vapour phase over the alloy was determined from chemical analysis of the condensate. The activity coefficients of both components in the alloy have been derived from the data using a modified Gibbs-Duhem relation. The ratio of saturation vapour pressures of pure Zn and Mg obtained from the analysis of alloy data agree well with values from the literature, providing an internal check on the accuracy of data obtained in this study. Both components of the alloy exhibit negative deviations from Raoult's law. The concentration-concentration structure factor of Bhatia and Thomton at zero wave vector, evaluated from the measurements, indicate the presence of MgZn2 type complex in the liquid state. The associated regular solution model has been used for the thermodynamic description of liquid Mg-Zn alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of phases showing icosahedral point symmetry was reported by Shechtman, Blech, Gratias and Cahn in rapidly quenched alloys of Al---Mn, Al---Fe and Al---Cr, and subsequently many other splat-cooled alloys with the i phase have been reported. In this paper we present the first results of high pressure experiments carried out on Al---Fe and Al---Mn quasi-crystals. The experiments performed at room temperature showed irreversible quasi-crystal-to-crystal transitions in Al---Mn and Al---Fe alloys. The transition pressures are 49 kbar for Al78Mn22, 93 kbar for Al86Mn14, 79 kbar for Al86Fe14, 54 kbar for Al82Fe18 and 108 kbar for Al75Fe25. The high pressure phases are found to be the equilibrium phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface segregation of Ge is seen in the Cu-5at%Ge alloy with an activation enthalpy equal to 17 kJ/mol. Oxidation of the alloy in the temperature range 400 to 600 K shows the formation of Cu2O and GeO which on further heating in vacuum at 650 K converts to GeO2 with the reduction of Cu2O to Cu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some tribological properties of a mica-dispersed Al-4%Cu-1.5%Mg alloy cast by a conventional foundry technique are reported. The effect of mica dispersion on the wear rate and journal bearing performance of the matrix alloy was studied under different pressures and under different interface friction conditions. The dispersion of mica was found (a) to increase the wear rate of the base alloy, (b) to decrease the temperature rise during wear and (c) to improve the ability of the alloy to resist seizure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimum conditions for producing cast aluminium alloy-mica particle composites, by stirring mica particles (40 to 120 mgrm) in molten aluminium alloys (above their liquidus temperatures), followed by casting in permanent moulds, are described. Addition of magnesium either as pieces along with mica particles on the surface of the melts or as a previously added alloying element was found to be necessary to disperse appreciable quantities (1.5 to 2 wt.%) of mica particles in the melts and retain them as uniform dispersions in castings under the conditions of present investigation. These castings can be remelted and degassed with nitrogen at least once with the retention of about 80% mica particles in the castings. Electron probe micro-analysis of these cast composites showed that magnesium added to the surface of the melt along with mica has a tendency to segregate around the mica particles, apparently improving the dispersability for mica particles in liquid aluminium alloys. The mechanical properties of the aluminium alloy-mica particle composite decrease with an increase in mica content, however, even at 2.2% the composite has a tensile strength of 14.22 kg mm–2 with 1.1% elongation, a compression strength of 42.61 kg mm–2, and an impact strength of 0.30 kgm cm–2. The properties are adequate for certain bearing applications, and the aluminium-mica composite bearings were found to run under boundary lubrication, semi-dry and dry friction conditions whereas the matrix alloy (without mica) bearings seized or showed stick slip under the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tensile stress–strain response and fracture in a hypereutectic Ti–6Al–4V–1.7B (weight percent) alloy were investigated by employing interrupted tensile tests combined with acoustic emission measurements, with the aim to identify the cause for the observed low ductility in this alloy. These tests were complemented with microscopy. The alloy contains TiB whiskers of different length scales, the majority of which include micro-whiskers ( 5–10 μm length) and a few primary-whiskers ( 200–300 μm length). Although the fracture of both types of whiskers occur during deformation, the former leads to a gradual decrease in the secant modulus whereas initiation of the latter leads to a drastic drop in the modulus along with failure of the specimen, limiting the ductility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.