919 resultados para wild pigs
Resumo:
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice and Arabidopsis while less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca L. (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, the SEASONAL FLOWERING LOCUS which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent LD suppression of flowering, and the early flowering that then occurs under LD is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca, and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.
Resumo:
Actinomyces hyovaginalis, an organism initially described from pigs, was recovered from nine sheep and a moufflon. Further strains of A. hyovaginalis were recovered from five samples from pigs over the same period. 16S rRNA sequencing and extensive phenotyping demonstrated high similarity between the ovine and porcine isolates; however differences with respect to erythritol, adonitol and l-arabitol fermentation were detected. Ovine isolates were made from various sample sites including abscesses and highlight the importance of the accurate identification of the various coryneform isolates which affect sheep. A. hyovaginalis can be added to the growing list of coryneforms which can cause disease in sheep including Corynebacterium pseudotuberculosis, Trueperella pyogenes and Arcanobacterium pluranimalium.
Resumo:
Objective: The effect of a single 5 day enrofloxacin treatment on the native Campylobacter coli population in conventionally weaned 5-week-old pigs was investigated. Materials: Twelve pigs were split into two groups of six: one group was treated with a therapeutic dose (15 mg/pig/day) of enrofloxacin and the other remained untreated to act as the control. Campylobacter coli were isolated from faecal samples and tested for ciprofloxacin resistance by measuring MIC values. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene of resistant isolates were identified by sequencing and denaturing HPLC. Levels of enrofloxacin and its primary metabolite ciprofloxacin in the pig faeces were also measured by HPLC. Results: No quinolone-resistant C. coli (n = 867) were detected in any of the pigs prior to treatment, indicating <0.1% resistance in the group. Resistant C. coli were isolated from pigs for up to 35 days after treatment with a therapeutic dose. These resistant C. coli had MIC values of 128 mg/L and 8-16 mg/L for nalidixic acid and ciprofloxacin, respectively, and the same single point mutation causing a Thr-86 to Ile substitution in the QRDR was identified in each. The concentration of enrofloxacin in the pig faeces was 2-4 mug/g faeces for the duration of the 5 day therapeutic treatment and was detected up to 10 days post-treatment. Ciprofloxacin was also measured and peaked at 0.6 mug/g faeces in the treated group. Conclusion: This study provides evidence that a single course of enrofloxacin treatment contributes directly to the emergence and persistence of fluoroquinolone resistance in C. coli.
Resumo:
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long-term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short- and long-term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.
Resumo:
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.
Resumo:
Diversity and abundance of wild-insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. Here, we show universally positive associations of fruit set with wild-insect visits to flowers in 41 crop systems worldwide, and thus clearly demonstrate their agricultural value. In contrast, fruit set increased significantly with visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively, because increase in their visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Further, visitation by wild insects and honey bees promoted fruit set independently, so high abundance of managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild-insect assemblages will enhance global crop yields.
Resumo:
In response to evidence of insect pollinator declines, organisations in many sectors, including the food and farming industry, are investing in pollinator conservation. They are keen to ensure that their efforts use the best available science. We convened a group of 32 ‘conservation practitioners’ with an active interest in pollinators and 16 insect pollinator scientists. The conservation practitioners include representatives from UK industry (including retail), environmental non-government organisations and nature conservation agencies. We collaboratively developed a long list of 246 knowledge needs relating to conservation of wild insect pollinators in the UK. We refined and selected the most important knowledge needs, through a three-stage process of voting and scoring, including discussions of each need at a workshop. We present the top 35 knowledge needs as scored by conservation practitioners or scientists. We find general agreement in priorities identified by these two groups. The priority knowledge needs will structure ongoing work to make science accessible to practitioners, and help to guide future science policy and funding. Understanding the economic benefits of crop pollination, basic pollinator ecology and impacts of pesticides on wild pollinators emerge strongly as priorities, as well as a need to monitor floral resources in the landscape.
Resumo:
The worldwide spread of barley cultivation required adaptation to agricultural environments far distant from those found in its centre of domestication. An important component of this adaptation is the timing of flowering, achieved predominantly in response to day length and temperature. Here, we use a collection of cultivars, landraces and wild barley accessions to investigate the origins and distribution of allelic diversity at four major flowering time loci, mutations at which have been under selection during the spread of barley cultivation into Europe. Our findings suggest that while mutant alleles at the PPD-H1 and PPD-H2 photoperiod loci occurred pre-domestication, the mutant vernalization non-responsive alleles utilized in landraces and cultivars at the VRN-H1 and VRN-H2 loci occurred post-domestication. The transition from wild to cultivated barley is associated with a doubling in the number of observed multi-locus flowering-time haplotypes, suggesting that the resulting phenotypic variation has aided adaptation to cultivation in the diverse ecogeographic locations encountered. Despite the importance of early-flowering alleles during the domestication of barley in Europe, we show that novel VRN alleles associated with early flowering in wild barley have been lost in domesticates, highlighting the potential of wild germplasm as a source of novel allelic variation for agronomic traits.
Resumo:
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.
Resumo:
Maximising the ability of piglets to survive exposure to pathogens is essential to reduce early piglet mortality, an important factor in efficient commercial pig production. Mortality rates can be influenced by many factors, including early colonization by microbial commensals. Here we describe the development of an intestinal microbiota, the Bristol microbiota, for use in gnotobiotic pigs and its influence on synthesis of systemic immunoglobulins. Such a microbiota will be of value in studies of the consequences of early microbial colonization on development of the intestinal immune system and subsequent susceptibility to disease. Gnotobiotic pig studies lack a well-established intestinal microbiota. The use of the Altered Schaedler Flora (ASF), a murine intestinal microbiota, to colonize the intestines of Caesarean-derived, gnotobiotic pigs prior to gut closure, resulted in unreliable colonization with most (but not all) strains of the ASF. Subsequently, a novel, simpler porcine microbiota was developed. The novel microbiota reliably colonized the length of the intestinal tract when administered to gnotobiotic piglets. No health problems were observed, and the novel microbiota induced a systemic increase in serum immunoglobulins, in particular IgA and IgM. The Bristol microbiota will be of value for highly controlled, reproducible experiments of the consequences of early microbial colonization on susceptibility to disease in neonatal piglets, and as a biomedical model for the impact of microbial colonization on development of the intestinal mucosa and immune system in neonates.
Resumo:
Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.
Resumo:
There is a period of some 5000 years or so in the prehistory of Europe when horse populations were greatly depleted and perhaps even disappeared in many places. Before this time, during the Upper Palaeolithic, wild horses were common; after, during the Bronze Age, domestic horses were being raised and used across Europe. What happened in between is uncertain, in part because of the sketchy archaeological record. Debates continue as to the origins (the when, where and how) of Europe's domestic horses, including whether horse husbandry dispersed only from habitats favourable to horses on the Eurasian steppes or whether there was local domestication in temperate Europe. This paper reviews the evidence for the transition from wild horses to domestic horses in Europe.
Resumo:
Piglets can be reared under a variety of conditions ranging from outdoor, organic farms to high intensity, indoor facilities which use prophylactic antibiotics and everything in between. Do these different early-life influences matter when it comes to longer-term health and productivity?
Resumo:
Recent work suggests that the environment experienced in early life can alter life histories in wild populations [1, 2, 3, 4 and 5], but our understanding of the processes involved remains limited [6 and 7]. Since anthropogenic environmental change is currently having a major impact on wild populations [8], this raises the possibility that life histories may be influenced by human activities that alter environmental conditions in early life. Whether this is the case and the processes involved remain unexplored in wild populations. Using 23 years of longitudinal data on the Mauritius kestrel (Falco punctatus), a tropical forest specialist, we found that females born in territories affected by anthropogenic habitat change shifted investment in reproduction to earlier in life at the expense of late life performance. They also had lower survival rates as young adults. This shift in life history strategy appears to be adaptive, because fitness was comparable to that of other females experiencing less anthropogenic modification in their natal environment. Our results suggest that human activities can leave a legacy on wild birds through natal environmental effects. Whether these legacies have a detrimental effect on populations will depend on life history responses and the extent to which these reduce individual fitness.
Supplementary feeding of wild birds indirectly affects ground beetle populations in suburban gardens
Resumo:
Supplementary feeding of wild birds by domestic garden-holders is a globally widespread and popular form of human–wildlife interaction, particularly in urban areas. Vast amounts of energy are thus being added to garden ecosystems. However, the potential indirect effects of this activity on non-avian species have been little studied to date, with the only two previous studies taking place under experimentally manipulated conditions. Here we present the first evidence of a localised depletive effect of wild bird feeding on ground beetles (Coleoptera: Carabidae) in suburban gardens under the usual feeding patterns of the garden-holders. We trapped significantly fewer ground beetles directly under bird-feeding stations than in matched areas of habitat away from feeders. Video analysis also revealed significantly higher activity by ground-foraging birds under the feeding stations than in the control areas. Small mammal trapping revealed no evidence that these species differ in abundance between gardens with and without bird feeders. We therefore suggest that local increases in ground-foraging activity by bird species whose diets encompass arthropods as well as seed material are responsible for the reduction in ground beetle numbers. Our work therefore illustrates that providing food for wild birds can have indirect negative effects on palatable prey species under typical conditions.