890 resultados para utilization of waste
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
Longitudinal panel studies of large, random samples of business start-ups captured at the pre-operational stage allow researchers to address core issues for entrepreneurship research, namely, the processes of creation of new business ventures as well as their antecedents and outcomes. Here, we perform a methods-orientated review of all 83 journal articles that have used this type of data set, our purpose being to assist users of current data sets as well as designers of new projects in making the best use of this innovative research approach. Our review reveals a number of methods issues that are largely particular to this type of research. We conclude that amidst exemplary contributions, much of the reviewed research has not adequately managed these methods challenges, nor has it made use of the full potential of this new research approach. Specifically, we identify and suggest remedies for context-specific and interrelated methods challenges relating to sample definition, choice of level of analysis, operationalization and conceptualization, use of longitudinal data and dealing with various types of problematic heterogeneity. In addition, we note that future research can make further strides towards full utilization of the advantages of the research approach through better matching (from either direction) between theories and the phenomena captured in the data, and by addressing some under-explored research questions for which the approach may be particularly fruitful.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
This paper examines the interactions between knowledge and power in the adoption of technologies central to municipal water supply plans, specifically investigating decisions in Progressive Era Chicago regarding water meters. The invention and introduction into use of the reliable water meter early in the Progressive Era allowed planners and engineers to gauge water use, and enabled communities willing to invest in the new infrastructure to allocate costs for provision of supply to consumers relative to use. In an era where efficiency was so prized and the role of technocratic expertise was increasing, Chicago’s continued failure to adopt metering (despite levels of per capita consumption nearly twice that of comparable cities and acknowledged levels of waste nearing half of system production) may indicate that the underlying characteristics of the city’s political system and its elite stymied the implementation of metering technologies as in Smith’s (1977) comparative study of nineteenth century armories. Perhaps, as with Flyvbjerg’s (1998) study of the city of Aalborg, the powerful know what they want and data will not interfere with their conclusions: if the data point to a solution other than what is desired, then it must be that the data are wrong. Alternatively, perhaps the technocrats failed adequately to communicate their findings in a language which the political elite could understand, with the failure lying in assumptions of scientific or technical literacy rather than with dissatisfaction in outcomes (Benveniste 1972). When examined through a historical institutionalist perspective, the case study of metering adoption lends itself to exploration of larger issues of knowledge and power in the planning process: what governs decisions regarding knowledge acquisition, how knowledge and power interact, whether the potential to improve knowledge leads to changes in action, and, whether the decision to overlook available knowledge has an impact on future decisions.
Resumo:
Community-based activism against proposed construction projects is growing. Many protests are poorly managed and escalate into long-term and sometimes acrimonious disputes which damage communities, firms and the construction industry as a whole. Using a thematic storytelling approach which draws on ethnographic method, within a single case study framework, new insights into the social forces that shape and sustain community-based protest against construction projects are provided. A conceptual model of protest movement continuity is presented which highlights the factors that sustain protest continuity over time. The model illustrates how social contagion leads to common community perceptions of development risk and opportunity, to a positive internalization of collective values and identity, to a strategic utilization of social capital and an awareness of the need to manage the emotional dynamics of protest through mechanisms such as symbolic artefacts.
Resumo:
The paper presents a demand side response scheme,which assists electricity consumers to proactively control own demands in such a way to deliberately avert congestion periods on the electrical network. The scheme allows shifting loads from peak to low demand periods in an attempt to flattening the national electricity requirement. The scheme can be concurrently used to accommodate the utilization of renewable energy sources,that might be available at user’s premises. In addition the scheme allows a full-capacity utilization of the available electrical infrastructure by organizing a wide-use of electric vehicles. The scheme is applicable in the Eastern and Southern States of Australia managed by the Australian Energy Market Operator. The results indicate the potential of the scheme to achieve energy savings and release capacity to accommodate renewable energy and electrical vehicle technologies.
Resumo:
An improved mesoscopic model is presented for simulating the drying of porous media. The aim of this model is to account for two scales simultaneously: the scale of the whole product and the scale of the heterogeneities of the porous medium. The innovation of this method is the utilization of a new mass-conservative scheme based on the Control-Volume Finite-Element (CV-FE) method that partitions the moisture content field over the individual sub-control volumes surrounding each node within the mesh. Although the new formulation has potential for application across a wide range of transport processes in heterogeneous porous media, the focus here is on applying the model to the drying of small sections of softwood consisting of several growth rings. The results conclude that, when compared to a previously published scheme, only the new mass-conservative formulation correctly captures the true moisture content evolution in the earlywood and latewood components of the growth rings during drying.
Resumo:
Office building retrofit projects face many challenges for on-site waste management. While the projects themselves have the potential for a significant level of reuse and recycling from decon-struction and demolition, their unique characteristics often prohibit direct application of existing waste management systems, which are typically based on managing waste generated through new material application in new build projects. Moreover, current waste management plans include no stimuli to involve Small and Medium Enterprises (SMEs) for on-site waste management. As SMEs carry out the majority of on-site work as subcontractors, their active involvements will result in more proactive approaches to waste management and enhance project delivery. This paper discusses the interim results of a continuing research aimed at engaging SMEs in the planning processes of waste management through the collaboration between subcontractors and main contractors of retrofitting projects. It introduces a conceptual model for SMEs to proactively plan and manage on-site waste generation for both deconstruction and construction stages, before traditional waste management plans by the main contractor come into place. The model also suggests a collaboration process between SMEs as subcontractors and large companies as the main contractor to improve the involvement and performance of SMEs in waste management of office building retrofit projects.
Resumo:
In face of the increasing concern on global warming and climate change, the interests in the utilization of solar energy for building operation are also rapidly growing. In this paper, the importance of using renewable energy in building operations is first discussed. The potential use of solar energy is then reviewed. Possible applications of solar energy in building operation are also discussed, including the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling and building-integrated photovoltaics. Finally, the research activities in the utilization of solar energy for space cooling at QUT are highlighted.
Resumo:
China has experienced an extraordinary level of economic development since the 1990s, following excessive competition between different regions. This has resulted in many resource and environmental problems. Land resources, for example, are either abused or wasted in many regions. The strategy of development priority zoning (DPZ), proposed by the Chinese National 11th Five-Year Plan, provides an opportunity to solve these problems by coordinating regional development and protection. In line with the rational utilization of land, it is proposed that the DPZ strategy should be integrated with regional land use policy. As there has been little research to date on this issue, this paper introduces a system dynamic (SD) model for assessing land use change in China led by the DPZ strategy. Land use is characterized by the prioritization of land development, land utilization, land harness and land protection (D-U-H-P). By using the Delphi method, a corresponding suitable prioritization of D-U-H-P for the four types of DPZ, including optimized development zones (ODZ), key development zones (KDZ), restricted development zones (RDZ), and forbidden development zones (FDZ) are identified. Suichang County is used as a case study in which to conduct the simulation of land use change under the RDZ strategy. The findings enable a conceptualization to be made of DPZ-led land use change and the identification of further implications for land use planning generally. The SD model also provides a potential tool for local government to combine DPZ strategy at the national level with land use planning at the local level.
Resumo:
Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation, and for improved healthcare access, delivery and standards. Although, such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Further, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology, and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented.
Resumo:
In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.
Resumo:
Waste management and minimisation is considered to be an important issue for achieving sustainability in the construction industry. Retrofit projects generate less waste than demolitions and new builds, but they possess unique features and require waste management approaches that are different to traditional new builds. With the increasing demand for more energy efficient and environmentally sustainable office spaces, the office building retrofit market is growing in capital cities around Australia with a high level of refurbishment needed for existing aging properties. Restricted site space and uncertain delivery process in these projects make it a major challenge to manage waste effectively. The labour-intensive nature of retrofit projects creates the need for the involvement of small and medium enterprises (SMEs) as subcontractors in on-site works. SMEs are familiar with on-site waste generation but are not as actively motivated and engaged in waste management activities as the stakeholders in other construction projects in the industry. SMEs’ responsibilities for waste management in office building retrofit projects need to be identified and adapted to the work delivery processes and the waste management system supported by project stakeholders. The existing literature provides an understanding of how to manage construction waste that is already generated and how to increase the waste recovery rate for office building retrofit projects. However, previous research has not developed theories or practical solutions that can guide project stakeholders to understand the specific waste generation process and effectively plan for and manage waste in ongoing project works. No appropriate method has been established for the potential role and capability of SMEs to manage and minimise waste from their subcontracting works. This research probes into the characteristics of office building retrofit project delivery with the aim to develop specific tools to manage waste and incorporate SMEs in this process in an appropriate and effective way. Based on an extensive literature review, the research firstly developed a questionnaire survey to identify the critical factors of on-site waste generation in office building retrofit projects. Semi-structured interviews were then utilised to validate the critical waste factors and establish the interrelationships between the factors. The interviews served another important function of identifying the current problems of waste management in the industry and the performance of SMEs in this area. Interviewees’ opinions on remedies to the problems were also collected. On the foundation of the findings from the questionnaire survey and semi-structured interviews, two waste planning and management strategies were identified for the dismantling phase and fit-out phase of office building retrofit projects, respectively. Two models were then established to organize SMEs’ waste management activities, including a work process-based integrated waste planning model for the dismantling phase and a system dynamics model for the fit-out phase. In order to apply the models in real practice, procedures were developed to guide SMEs’ work flow in on-site waste planning and management. In addition, a collaboration framework was established for SMEs and other project stakeholders for effective waste planning and management. Furthermore, an organisational engagement strategy was developed to improve SME waste management practices. Three case studies were conducted to validate and finalise the research deliverables. This research extends the current literature that mostly covers waste management plans in new build projects, by presenting the knowledge and understanding of addressing waste problems in retrofit projects. It provides practical tools and guidance for industry practitioners to effectively manage the waste generation processes in office building retrofit projects. It can also promote industry-level recognition of the role of SMEs and their performance in on-site waste management.
Resumo:
Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc and used concrete is the main waste product of them. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainable benefits. As the mortar, bricks, glass and asphalt present in different constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test and California Bearing Ratio (CBR). Results were compared with those of the standard road materials used in Queensland, Australia and found that ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are sitting in the margin of the minimum required specifications of base materials while others are lower than that.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.