879 resultados para transcranial direct current stimulation
Resumo:
Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A real-time Fourier transform infrared spectroscopy (FTIRS) analysis of the products of methanol oxidation in a prototype direct-methanol fuel cell operating at high temperatures (150 to 185°C) is reported here. The methanol oxidation products on platinum black and platinum-ruthenium catalyst surfaces were determined as a function of the fuel cell operating temperature, current density, and methanol/water mole ratio. Neither formaldehyde nor formic acid was detected in anode exhaust gas at all cell operating conditions. The product distributions of methanol oxidation obtained by on-line FTIRS are consistent with our previous results obtained by on-line mass spectroscopy under similar conditions. With pure methanol in anode feed, methanaldimethylacetal was found to be the main product, methyl formate and CO were also found. However, when water was present in the anode feed, the main product was CO , and the formation of methanaldimethylacetal and methyl formate decreased significantly with increase of the water/methanol mole ratio. Increase of cell operating temperature enhanced the formation of CO and decreased the formation of methanaldimethylacetal and methyl formate. Pt/Ru catalyst is more active for methanol oxidation and has a higher selectivity toward CO formation than Pt-black. Nearly complete methanol oxidation, i.e., the product was almost exclusively CO , was achieved using a Pt/Ru catalyst and a water/methanol mole ratio of 2 or higher in the anode feed at a temperature of 185°C or above.
Resumo:
First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.
Resumo:
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities. © 2012 Bentham Science Publishers.
Resumo:
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Resumo:
A preliminary investigation of electrocatalytic oxidation activity ofbutanol isomers has been carried out to study their potential asfuels for direct alcohol fuel cells. The electrochemical study wascarried out on Pt and Pd electrodes using a three electrode cell setup in alkaline media. The primary alcohol isomers of butanol wereobserved to behave similarly in their electrochemical reactionswhereas 2-butanol showed completely different oxidation featureson both catalysts. For example, no poisoning effects were observedfor 2- butanol unlike for the primary butanol isomers. In contrast,tert-butanol did not show any oxidation reaction on Pt and Pdelectrodes. Furthermore, Pd was not active at all in acidic mediafor butanol oxidation. The reactivity of butanol isomers were foundto be in the order n-butanol>iso-butanol>2-butanol>tert-butanolbased on the oxidation current density values.
Resumo:
This paper presents a current and turbulence measurement campaign conducted at a test site in an energetic tidal channel known as Strangford Narrows, Northern Ireland. The data was collected as part of the MaRINET project funded by the EU under their FP7 framework. It was a collaborative effort between Queen’s University Belfast, SCHOTTEL and Fraunhofer IWES. The site is highly turbulent with a strong shear flow. Longer term measurements of the flow regime were made using a bottom mounted Acoustic Doppler Profiler (ADP). During a specific turbulence measurement campaign, two collocated in- struments were used to measure incoming flow characteristics: an ADP (Aquadopp, Nortek) and a turbulence profiler (MicroRider, Rockland Scientific International). The instruments recorded the same incoming flow, so that direct comparisons between the data can be made. In this study the methodology adopted to deploy the instruments is presented. The resulting turbulence measurements using the different types of instrumentation are compared and the usefulness of each instrument for the relevant range of applications is discussed. The paper shows the ranges of the frequency spectra obtained using the different instruments, with the combined measurements providing insight into the structure of the turbulence across a wide range of scales.
Resumo:
The main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.
Resumo:
The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.
Resumo:
Renders are an important item in historical buildings and the need for their periodical re-application is a basic conservation procedure. In modern times there has been a trend towards the replacement of traditional pure lime mortars by new formulations including Portland cement or hydraulic lime. Apart from those interventions on specific and very important monuments, in which the use oftraditional non-hydraulic mortars can be enforced, in most of the projects involving less than first order magnitude heritage the use of some sort of hydraulic components is becoming the rule rather than the exception. The present paper describes and analyses the results of an experimental study with ten formulations of current mortars - including some that can hardly be considered as adequate conservation procedures - allowing a direct comparison in terms of some of the most relevant characteristics.
Resumo:
Over the past few decades there has been some discussion concerning the increase of the natural background radiation originated by coal-fired power plants, due to the uranium and thorium content present in combustion ashes. The radioactive decay products of uranium and thorium, such as radium, radon, polonium, bismuth and lead, are also released in addition to a significant amount of 40K. Since the measurement of radioactive elements released by the gaseous emissions of coal power plants is not compulsory, there is a gap of information concerning this situation. Consequently, the prediction of dispersion and mobility of these elements in the environment, after their release, is based on limited data and the radiological impact from the exposure to these radioactive elements is unknown. This paper describes the methodology that is being developed to assess the radiological impact due to the raise in the natural background radiation level originated by the release and dispersion of the emitted radionuclides. The current investigation is part of a research project that is undergoing in the vicinity of Sines coal-fired power plant (south of Portugal) until 2013. Data from preliminary stages are already available and possible of interpretation.
Resumo:
Direct Research Internship Course
Resumo:
The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.
Resumo:
The nature tourism experienced a great expansion of its market with the appearance of different lifestyles. In this Work Project a study regarding the website direct sales of Rota Vicentina was developed. Its website shows the idea of being solely an information structure and not a purchase one, leading to a current absence of online sales. Hence, it is suggested the modification of its business model, using different instruments and channels. Some digital marketing recommendations were developed in order to boost website sales, such as a platform for online reviews, remarketing campaigns and social media activity.
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.