4 resultados para transcranial direct current stimulation
em CaltechTHESIS
Resumo:
This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.
Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.
Resumo:
The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.
Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.
This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.
Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.
We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.
Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.
To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.
Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.
To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.
Resumo:
Transcranial magnetic stimulation (TMS) is a technique that stimulates the brain using a magnetic coil placed on the scalp. Since it is applicable to humans non-invasively, directly interfering with neural electrical activity, it is potentially a good tool to study the direct relationship between perceptual experience and neural activity. However, it has been difficult to produce a clear perceptible phenomenon with TMS of sensory areas, especially using a single magnetic pulse. Also, the biophysical mechanisms of magnetic stimulation of single neurons have been poorly understood.
In the psychophysical part of this thesis, perceptual phenomena induced by TMS of the human visual cortex are demonstrated as results of the interactions with visual inputs. We first introduce a method to create a hole, or a scotoma, in a flashed, large-field visual pattern using single-pulse TMS. Spatial aspects of the interactions are explored using the distortion effect of the scotoma depending on the visual pattern, which can be luminance-defined or illusory. Its similarity to the distortion of afterimages is also discussed. Temporal interactions are demonstrated in the filling-in of the scotoma with temporally adjacent visual features, as well as in the effective suppression of transient visual features. Also, paired-pulse TMS is shown to lead to different brightness modulations in transient and sustained visual stimuli.
In the biophysical part, we first develop a biophysical theory to simulate the effect of magnetic stimulation on arbitrary neuronal structure. Computer simulations are performed on cortical neuron models with realistic structure and channels, combined with the current injection that simulates magnetic stimulation. The simulation results account for general and basic characteristics of the macroscopic effects of TMS including our psychophysical findings, such as a long inhibitory effect, dependence on the background activity, and dependence on the direction of the induced electric field.
The perceptual effects and the cortical neuron model presented here provide foundations for the study of the relationship between perception and neural activity. Further insights would be obtained from extension of our model to neuronal networks and psychophysical studies based on predictions of the biophysical model.
Resumo:
From the tunneling characteristics of a tin-tin oxide-lead junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated – several temperatures near Tc and down to a reduced temperature t = 0.8 –the observed current dependence agrees quite well with predictions based on the Ginzburg-Landau-Gor’kov theory. Near Tc the predicted temperature dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small “Josephson” tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find vc = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths.