964 resultados para texture analysis
Resumo:
In this study, a nanofiber mesh made by co-electrospinning medical grade poly(epsilon-caprolactone) and collagen (mPCL/Col) was fabricated and studied. Its mechanical properties and characteristics were analyzed and compared to mPCL meshes. mPCL/Col meshes showed a reduction in strength but an increase in ductility when compared to PCL meshes. In vitro assays revealed that mPCL/Col supported the attachment and proliferation of smooth muscle cells on both sides of the mesh. In vivo studies in the corpus cavernosa of rabbits revealed that the mPCL/Col scaffold used in conjunction with autologous smooth muscle cells resulted in better integration with host tissue when compared to cell free scaffolds. On a cellular level preseeded scaffolds showed a minimized foreign body reaction.
Resumo:
A comprehensive voltage imbalance sensitivity analysis and stochastic evaluation based on the rating and location of single-phase grid-connected rooftop photovoltaic cells (PVs) in a residential low voltage distribution network are presented. The voltage imbalance at different locations along a feeder is investigated. In addition, the sensitivity analysis is performed for voltage imbalance in one feeder when PVs are installed in other feeders of the network. A stochastic evaluation based on Monte Carlo method is carried out to investigate the risk index of the non-standard voltage imbalance in the network in the presence of PVs. The network voltage imbalance characteristic based on different criteria of PV rating and location and network conditions is generalized. Improvement methods are proposed for voltage imbalance reduction and their efficacy is verified by comparing their risk index using Monte Carlo simulations.
Resumo:
Parliamentary questions are the most popular and visible tool for making the executive accountable to the legislature. However, their use, purpose and effectiveness vary in different countries. In this study, 4023 parliamentary questions asked in the Uttar Pradesh State Legislative Assembly were analysed. The results show that half of the total members of the Assembly used this device. Contrary to findings in the Australian parliamentary system, there was no evidence of ‘Dorothy Dix’ and party influence on parliamentary questions. Furthermore, 30% of the questions were aimed at seeking information and 70% pressed for action. The government provided the required information in 95% of the questions in the former category but only took action in 37% in the latter category. The study concludes that parliamentary questions serve as an effective legislative tool in the Uttar Pradesh Legislature
Resumo:
The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
This paper presents an analysis of phasor measurement method for tracking the fundamental power frequency to show if it has the performance necessary to cope with the requirements of power system protection and control. In this regard, several computer simulations presenting the conditions of a typical power system signal especially those highly distorted by harmonics, noise and offset, are provided to evaluate the response of the Phasor Measurement (PM) technique. A new method, which can shorten the delay of estimation, has also been proposed for the PM method to work for signals free of even-order harmonics.
Resumo:
Optimal operation and maintenance of engineering systems heavily rely on the accurate prediction of their failures. Most engineering systems, especially mechanical systems, are susceptible to failure interactions. These failure interactions can be estimated for repairable engineering systems when determining optimal maintenance strategies for these systems. An extended Split System Approach is developed in this paper. The technique is based on the Split System Approach and a model for interactive failures. The approach was applied to simulated data. The results indicate that failure interactions will increase the hazard of newly repaired components. The intervals of preventive maintenance actions of a system with failure interactions, will become shorter compared with scenarios where failure interactions do not exist.
Resumo:
Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.
Resumo:
Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
Cycling provides a number of health and environmental benefits. However, cyclists are more likely to suffer serious injury or be killed in traffic accidents than car drivers and the estimated cost of crashes in Australia is $1.25AU billion per year. Current interventions to reduce bicycle crashes include compulsory helmet use, media campaigns, and the provision of cycling lanes, as well as road user education and training. It is difficult to assess the effectiveness of current interventions as there is no accurate measure of cyclist exposure in South East Queensland (SEQ). This paper analyses cyclist crash characteristics in Queensland with the view to identifying appropriate Intelligent Transport Systems (ITS) based intervention to reduce cyclist injury and death. The inappropriateness of some ITS interventions to improve cyclist safety is highlighted and a set of ITS interventions are identified, based on Queensland crash data 2002-2006.
Resumo:
In a power network, when a propagation energy wave caused by a disturbance hits a weak link, a reflection is appeared and some of energy is transferred across the link. In this work, an analytical descriptive methodology is proposed to study the dynamical stability of a large scale power system. For this purpose, the measured electrical indices (angle, or voltage/frequency) following a fault in different points among the network are used, and the behaviors of the propagated waves through the lines, nodes and buses are studied. This work addresses a new tool for power system stability analysis based on a descriptive study of electrical measurements. The proposed methodology is also useful to detect the contingency condition and synthesis of an effective emergency control scheme.