890 resultados para space and cinema
Resumo:
We present high-resolution (R = lambda/Deltalambda similar to 40 000) Ca II K interstellar observations (lambda(air) = 3933.66Angstrom) towards 88 mainly B-type stars, of which 74 are taken from the Edinburgh-Cape or Palomar-Green surveys, and 81 have > 25degrees. The majority of the data come from previously existing spectroscopy, although also included are 18 new observations of stars with echelle spectra taken with UVES on the Very Large Telescope UT2 (Kueyen). Some 49 of the sample stars have distance estimates above the Galactic plane (z) greater than or equal to 1 kpc, and are thus good probes of the halo interstellar medium. Of the 362 interstellar Ca K components that we detect, 75 (21 per cent) have absolute values of their LSR velocity values exceeding 40 km s(-1). In terms of the deviation velocity for the sightlines with distance estimates, 46/273 (17 per cent) of components have velocity values exceeding those predicted by standard Galactic rotation by more than 40 km s(-1). Combining this data set with previous observations, we find that the median value of the reduced equivalent width (REW) of stars with z greater than or equal to 1 kpc (EW x sin ) is similar to 115 mAngstrom (n = 80), similar to that observed in extragalactic sightlines by Bowen. Using data of all z distances, the REW at infinity is found to be similar to 130 mAngstrom, with the scaleheight (1) of the Ca II K column density distribution being;z 800 pc (n = 196) and reduced column density at infinity of log[N(Ca II K) cm(-2)] similar to 12.24. This implies that similar to30 per cent of Ca II K absorption occurs at distances exceeding similar to1 kpc. For nine sightlines, with distance exceeding 1 kpc and with a companion object within 5degrees, we find that all but two have values of Ca II reduced equivalent width the same to within similar to20 per cent, when the REW of the nearest object is extrapolated to the distance of the further of the pair, and assuming 1 = 800 pc. For 29 of our sightlines with z greater than or equal to 1 kpc and a H I detection from the Leiden-Dwingeloo survey (beamsize of 0.5degrees), we find log(N(Ca II K)IN(H I)) ranging from -7.4 to - 8.4. Values of the Ca II K abundance relative to neutral hydrogen (log[N(Ca II K) cm(-2)] - log[N(H I) cm(-2)]) are found to be more than similar to0.5 dex higher in stars with distances exceeding approximate to100 pc, when compared with the (log[N(Ca II K) cm(-2)] -log[N(H-tot) cm(-2)]) values found in nearby sightlines such as those in Wakker & Mathis (2000). Finally, stellar Ca II K equivalent widths of the sample are determined for 26 objects.
Resumo:
We compare existing high spectral resolution (R = lambda/Deltalambda similar to 40 000) Ca II Kobservations (lambda(air) = 3933.66 Angstrom) towards 88 mainly B-type stars, and new observations taken using the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the William Herschel Telescope at R similar to 10 000 towards three stars taken from the Palomar-Green Survey, with 21-cm HI emission-line profiles, in order to search for optical absorption towards known intermediate- and high-velocity cloud complexes. Given certain assumptions, limits to the gas phase abundance of Ca II are estimated for the cloud components. We use the data to derive the following distances from the Galactic plane (z). (i) Tentative lower z-height limits of 2800 and 4100 pc towards complex C using lack of absorption in the spectra of HD341617 and PG 0855 + 294, respectively. (ii) A weak lower z-height of 1400 pc towards complex WA-WB using lack of absorption in EC 09470-1433 and a weak lower limit of 2470 pc using lack of absorption in EC 09452-1403. (iii) An upper z- height of 2470 pc towards a southern intermediate- velocity cloud (IVC) with v(LSR) = -55 km s(-1) using PG 2351 + 198. (iv) Detection of a possible IVC in Ca II absorption at v(LSR) = +52 km s(-1) using EC 20104-2944. No associated HI in emission is detected. At this position, normal Galactic rotation predicts velocities of up to similar to+ 25 km s(-1). The detection puts an upper z-height of 1860 pc to the cloud. (v) Tentative HI and Ca II K detections towards an IVC at similar to+70 km s(-1) in the direction of high-velocity cloud (HVC) complex WE, sightline EC 06387-8045, indicating that the IVC may be at a z-height lower than 1770 pc. (vi) Detection of Ca II K absorption in the spectrum of PG 0855 + 294 in the direction of IV20, indicating that this IVC has a z-height smaller than 4100 pc. (vii) A weak lower z-height of 4300 pc towards a small HVC with v(LSR) = +115 km s(-1) at l, b = 200degrees, + 52degrees, using lack of absorption in the Ca II K spectrum of PG 0955 + 291.
Resumo:
High-resolution UCLES/AAT spectra are presented for nine B-type supergiants in the SMC, chosen on the basis that they may show varying amounts of nuclear-synthetically processed material mixed to their surface. These spectra have been analysed using a new grid of approximately 12 000 non-LTE line blanketed tlusty model atmospheres to estimate atmospheric parameters and chemical composition. The abundance estimates for O, Mg and Si are in excellent agreement with those deduced from other studies, whilst the low estimate for C may reflect the use of the C II doublet at 4267 Å. The N estimates are approximately an order of magnitude greater than those found in unevolved B-type stars or H II regions but are consistent with the other estimates in AB-type supergiants. These results have been combined with results from a unified model atmosphere analysis of UVES/VLT spectra of B-type supergiants (Trundle et al. 2004, A&A, 417, 217) to discuss the evolutionary status of these objects. For two stars that are in common with those discussed by Trundle et al., we have undertaken a careful comparison in order to try to understand the relative importance of the different uncertainties present in such analyses, including observational errors and the use of static or unified models. We find that even for these relatively luminous supergiants, tlusty models yield atmospheric parameters and chemical compositions similar to those deduced from the unified code fastwind.
Resumo:
We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.
Resumo:
The SuperWASP cameras are wide-field imaging systems at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some 482 deg2 with an angular scale of 13.7" pixel-1, and is capable of delivering photometry with accuracy better than 1% for objects having V~7.0-11.5. Lower quality data for objects brighter than V~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100 Gbytes per night. We have produced a robust, largely automatic reduction pipeline and advanced archive, which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exoplanet systems suitable for spectroscopic follow-up observations. The first 6 month season of SuperWASP-North observations produced light curves of ~6.7 million objects with 12.9 billion data points.
Resumo:
Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory. For the first time, cospatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of nonthermal electrons accelerated during the impulsive phase of an M2.2 flare. When we assumed a thick-target model, the injected electron spectrum was found to have a spectral index of similar to 7.3, a low-energy cutoff of similar to 20 keV, and a resulting flux of >= 4 x10(10) ergs cm(-2) s(-1). The dynamic response of the atmosphere was determined using CDS spectra; we found a mean upflow velocity of 230 +/- 38 km s(-1) in Fe (XIX) (592.23 angstrom) and associated downflows of 36 +/- 16 and 43 +/- 22 km s(-1) at chromospheric and transition region temperatures, respectively, relative to an averaged quiet- Sun spectra. The errors represent a 1 j dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.
Resumo:
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes, 47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present results from `snap-shot' observations of comets 43P/Wolf-Harrington, 44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The comets were at heliocentric distances of between 3 and 7 au at this time. We present measurements of size and activity levels for the snap-shot targets. The time-series data allow us to constrain rotation periods and shapes, and thus bulk densities. We also measure colour indices (V - R) and (R - I) and reliable radii for these comets. We compare all of our findings to date with similar results for other comets and Kuiper Belt Objects (KBOs). We find that the rotational properties of nuclei and KBOs are very similar, that there is evidence for a cut-off in bulk densities at ~0.6 g cm-3 in both populations, and the colours of the two populations show similar correlations. For JFCs, there is no observational evidence for the optical colours being dependent on either position in the orbit or orbital parameters.
Resumo:
We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219-0005465 (GSC 02265-00107 = WASP-1) and USNO-B1.0 0964-0543604 (GSC 00522-01199 = WASP-2). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radial-velocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80-0.98 and 0.81-0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 RJup, whereas WASP-2b has a radius in the range 0.65-1.26 RJup.
Resumo:
Energies of the 54 levels belonging to the (1s(2)2s(2)2p(6)) 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d and 3s3p(5)3d configurations of Fe X have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 3%, whereas results for other parameters are probably accurate to better than 20%. Additionally, the agreement between measured and calculated lifetimes is better than 10%.
Resumo:
Energy levels and oscillator strengths (transition probabilities) have been calculated for transitions among 46 fine-structure levels of the (1s(2)) 2s(2) 2p(2), 2s2p(3),2p(4), 2s(2)2p3s, 2s(2) 2p3p and 2s(2)2p3d configurations of C-like K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX using the GRASP code. Configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels agree within 3% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions.
Resumo:
Energy levels and radiative rates have been calculated for fine-structure transitions among the lowest 89 levels of the (1s(2)) 2s(2)2p(6), 2s(2) 2p(5) 3 l, 2s(2) 2p(5) 4l, 2s2p(6) 3 l, and 2s2p(6)4l configurations of Fe XVII using the GRASP code of Dyall et al. Collision strengths have also been calculated, for transitions among the lowest 55 levels, using the recently developed Dirac atomic R-matrix code (DARC) of Norrington & Grant. The results are compared with those available in the literature, and the accuracy of the data is assessed.