929 resultados para source code analysis
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an investigation of design code provisions for steel-concrete composite columns. The study covers the national building codes of United States, Canada and Brazil, and the transnational EUROCODE. The study is based on experimental results of 93 axially loaded concrete-filled tubular steel columns. This includes 36 unpublished, full scale experimental results by the authors and 57 results from the literature. The error of resistance models is determined by comparing experimental results for ultimate loads with code-predicted column resistances. Regression analysis is used to describe the variation of model error with column slenderness and to describe model uncertainty. The paper shows that Canadian and European codes are able to predict mean column resistance, since resistance models of these codes present detailed formulations for concrete confinement by a steel tube. ANSI/AISC and Brazilian codes have limited allowance for concrete confinement, and become very conservative for short columns. Reliability analysis is used to evaluate the safety level of code provisions. Reliability analysis includes model error and other random problem parameters like steel and concrete strengths, and dead and live loads. Design code provisions are evaluated in terms of sufficient and uniform reliability criteria. Results show that the four design codes studied provide uniform reliability, with the Canadian code being best in achieving this goal. This is a result of a well balanced code, both in terms of load combinations and resistance model. The European code is less successful in providing uniform reliability, a consequence of the partial factors used in load combinations. The paper also shows that reliability indexes of columns designed according to European code can be as low as 2.2, which is quite below target reliability levels of EUROCODE. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports a method for the analysis of secondary metabolites stored in glandular trichomes, employing negative ion `chip-based` nanospray tandem mass spectrometry. The analyses of glandular trichomes from Lychnophora ericoides, a plant endemic to the Brazilian `cerrado` and used in traditional medicine as an anti-inflammatory and analgesic agent, led to the identification of five flavonoids (chrysin, pinocembrin, pinostrobin, pinobanksin and 3-O-acetylpinobanksin) by direct infusion of the extracts of glandular trichomes into the nanospray ionisation source. All the flavonoids have no oxidation at ring B, which resulted in a modification of the fragmentation pathways compared with that of the oxidised 3,4-dihydroflavonoids already described in the literature. The absence of the anti-inflammatory and antioxidant di-C-glucosylflavone vicenin-2, or any other flavonoid glycosides, in the glandular trichomes was also demonstrated. The use of the,`chip-based` nanospray QqTOF apparatus is a new fast and useful tool for the identification of secondary metabolites stored in the glandular trichomes, which can be useful for chemotaxonomic studies based on metabolites from glandular trichomes. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Two basic representations of principal-agent relationships, the 'state-space' and 'parameterized distribution' formulations, have emerged. Although the state-space formulation appears more natural, analytical studies using this formulation have had limited success. This paper develops a state-space formulation of the moral-hazard problem using a general representation of production under uncertainty. A closed-form solution for the agency-cost problem is derived. Comparative-static results are deduced. Next we solve the principal's problem of selecting the optimal output given the agency-cost function. The analysis is applied to the problem of point-source pollution control. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Techniques applying digital images increasingly have been used in biology, medicine, physics, and other research areas. The image coordinates can represent light intensities values to be detected by a CCD. Based on this concept, a photometric system composed of a LED source and a digital camera as a detector was used for optical density measurements. Standards for permanganate, glucose, and protein solutions were detemined by colorimetric methods using our device. Samples of protein of Pasteurella mutocida bacteria membrane and, also, fractions of rabbit kidney membrane, rich in Na, K-ATPase, with unknown concentrations were dosed through the Hartree method using our photometric system.
Resumo:
Methods We pooled data from 17 case-control studies including 12 716 cases and the 17 438 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for associations between body mass index (BMI) at different ages and HNC risk, adjusted for age, sex, centre, race, education, tobacco smoking and alcohol consumption. Results Adjusted ORs (95% CIs) were elevated for people with BMI at reference (date of diagnosis for cases and date of selection for controls) < 18.5 kg/m(2) (2.13, 1.75-2.58) and reduced for BMI > 25.0-30.0 kg/m(2) (0.52, 0.44-0.60) and BMI >= 30 kg/m(2) (0.43, 0.33-0.57), compared with BMI > 18.5-25.0 kg/m(2). These associations did not differ by age, sex, tumour site or control source. Although the increased risk among people with BMI < 18.5 kg/m(2) was not modified by tobacco smoking or alcohol drinking, the inverse association for people with BMI > 25 kg/m(2) was present only in smokers and drinkers. Conclusions In our large pooled analysis, leanness was associated with increased HNC risk regardless of smoking and drinking status, although reverse causality cannot be excluded. The reduced risk among overweight or obese people may indicate body size is a modifier of the risk associated with smoking and drinking. Further clarification may be provided by analyses of prospective cohort and mechanistic studies.
Resumo:
Functional MRI (fMRI) data often have low signal-to-noise-ratio (SNR) and are contaminated by strong interference from other physiological sources. A promising tool for extracting signals, even under low SNR conditions, is blind source separation (BSS), or independent component analysis (ICA). BSS is based on the assumption that the detected signals are a mixture of a number of independent source signals that are linearly combined via an unknown mixing matrix. BSS seeks to determine the mixing matrix to recover the source signals based on principles of statistical independence. In most cases, extraction of all sources is unnecessary; instead, a priori information can be applied to extract only the signal of interest. Herein we propose an algorithm based on a variation of ICA, called Dependent Component Analysis (DCA), where the signal of interest is extracted using a time delay obtained from an autocorrelation analysis. We applied such method to inspect functional Magnetic Resonance Imaging (fMRI) data, aiming to find the hemodynamic response that follows neuronal activation from an auditory stimulation, in human subjects. The method localized a significant signal modulation in cortical regions corresponding to the primary auditory cortex. The results obtained by DCA were also compared to those of the General Linear Model (GLM), which is the most widely used method to analyze fMRI datasets.
Resumo:
Clinicians working in the field of congenital and paediatric cardiology have long felt the need for a common diagnostic and therapeutic nomenclature and coding system with which to classify patients of all ages with congenital and acquired cardiac disease. A cohesive and comprehensive system of nomenclature, suitable for setting a global standard for multicentric analysis of outcomes and stratification of risk, has only recently emerged, namely, The International Paediatric and Congenital Cardiac Code. This review, will give an historical perspective on the development of systems of nomenclature in general, and specifically with respect to the diagnosis and treatment of patients with paediatric and congenital cardiac disease. Finally, current and future efforts to merge such systems into the paperless environment of the electronic health or patient record on a global scale are briefly explored. On October 6, 2000, The International Nomenclature Committee for Pediatric and Congenital Heart Disease was established. In January, 2005, the International Nomenclature Committee was constituted in Canada as The International Society for Nomenclature of Paediatric and Congenital Heart Disease. This International Society now has three working groups. The Nomenclature Working Group developed The International Paediatric and Congenital Cardiac Code and will continue to maintain, expand, update, and preserve this International Code. It will also provide ready access to the International Code for the global paediatric and congenital cardiology and cardiac surgery communities, related disciplines, the healthcare industry, and governmental agencies, both electronically and in published form. The Definitions Working Group will write definitions for the terms in the International Paediatric and Congenital Cardiac Code, building on the previously published definitions from the Nomenclature Working Group. The Archiving Working Group, also known as The Congenital Heart Archiving Research Team, will link images and videos to the International Paediatric and Congenital Cardiac Code. The images and videos will be acquired from cardiac morphologic specimens and imaging modalities such as echocardiography, angiography, computerized axial tomography and magnetic resonance imaging, as well as intraoperative images and videos. Efforts are ongoing to expand the usage of The International Paediatric and Congenital Cardiac Code to other areas of global healthcare. Collaborative efforts are under-way involving the leadership of The International Nomenclature Committee for Pediatric and Congenital Heart Disease and the representatives of the steering group responsible for the creation of the 11th revision of the International Classification of Diseases, administered by the World Health Organisation. Similar collaborative efforts are underway involving the leadership of The International Nomenclature Committee for Pediatric and Congenital Heart Disease and the International Health Terminology Standards Development Organisation, who are the owners of the Systematized Nomenclature of Medicine or ""SNOMED"". The International Paediatric and Congenital Cardiac Code was created by specialists in the field to name and classify paediatric and congenital cardiac disease and its treatment. It is a comprehensive code that can be freely downloaded from the internet (http://www.IPCCC.net) and is already in use worldwide, particularly for international comparisons of outcomes. The goal of this effort is to create strategies for stratification of risk and to improve healthcare for the individual patient. The collaboration with the World Heath Organization, the International Health Terminology Standards Development Organisation, and the healthcare Industry, will lead to further enhancement of the International Code, and to Its more universal use.
Resumo:
The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, Sao Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of Sao Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F(-)) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F(-) for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F(-) intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F(-), control vs. 50 ppm F(-) and 5 ppm F(-) vs. 50 ppm F(-) groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and 0c-2,1-globulin) and one related to detoxification (aflatoxin-Bl-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F(-) toxicity, even in low doses. 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8-14, 2011; View this article online at wileyonlinelibrary.com. DOI 10:1002/jbt.20353