918 resultados para solid oxide fuel cell
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.
Increasing the electrolyte capacity of alkaline Zn-air fuel cells by scavenging zincate with Ca(OH)2
Resumo:
The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)
Resumo:
The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5∼1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. ^ This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range. ^
Resumo:
A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^
Resumo:
Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.
Resumo:
To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.
Resumo:
A new method combining electrospinning of SPEEK and direct spinning of CNT forests has been used to prepare sulfonated poly(ether ether ketone) (SPEEK)/directly spinnable carbon nanotube (dsCNT) composite proton exchange membranes. The SPEEK/dsCNT membrane is more robust than SPEEK alone, and in a fuel cell significantly outperforms both SPEEK and the commercial Nafion 212 membranes.
Resumo:
Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.
Resumo:
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées.
Resumo:
Miniaturization of power generators to the MEMS scale, based on the hydrogen-air fuel cell, is the object of this research. The micro fuel cell approach has been adopted for advantages of both high power and energy densities. On-board hydrogen production/storage and an efficient control scheme that facilitates integration with a fuel cell membrane electrode assembly (MEA) are key elements for micro energy conversion. Millimeter-scale reactors (ca. 10 µL) have been developed, for hydrogen production through hydrolysis of CaH2 and LiAlH4, to yield volumetric energy densities of the order of 200 Whr/L. Passive microfluidic control schemes have been implemented in order to facilitate delivery, self-regulation, and at the same time eliminate bulky auxiliaries that run on parasitic power. One technique uses surface tension to pump water in a microchannel for hydrolysis and is self-regulated, based on load, by back pressure from accumulated hydrogen acting on a gas-liquid microvalve. This control scheme improves uniformity of power delivery during long periods of lower power demand, with fast switching to mass transport regime on the order of seconds, thus providing peak power density of up to 391.85 W/L. Another method takes advantage of water recovery by backward transport through the MEA, of water vapor that is generated at the cathode half-cell reaction. This regulation-free scheme increases available reactor volume to yield energy density of 313 Whr/L, and provides peak power density of 104 W/L. Prototype devices have been tested for a range of duty periods from 2-24 hours, with multiple switching of power demand in order to establish operation across multiple regimes. Issues identified as critical to the realization of the integrated power MEMS include effects of water transport and byproduct hydrate swelling on hydrogen production in the micro reactor, and ambient relative humidity on fuel cell performance.
Resumo:
Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties
Resumo:
Carbon-supported Pt–Sn catalysts commonly contain Pt–Sn alloy and/or Pt–Sn bimetallic systems (Sn oxides). Nevertheless, the origin of the promotion effect due to the presence of Sn in the Pt–Sn/C catalyst towards ethanol oxidation in acid media is still under debate and some contradictions. Herein, a series of Ptx–Sny/C catalysts with different atomic ratios are synthesized by a deposition process using formic acid as the reducing agent. Catalysts structure and chemical compositions are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and their relationship with catalytic behavior towards ethanol electro-oxidation was established. Geometric structural changes are producing by highest Sn content (Pt1–Sn1/C) promoted the interaction of Pt and Sn forming a solid solution of Pt–Sn alloy phase, whereas, the intermediate and lowest Sn content (Pt2–Sn1/C and Pt3–Sn1/C, respectively) promoted the electronic structure modifications of Pt by Sn addition without the formation of a solid solution. The amount of Sn added affects the physical and chemical characteristics of the bimetallic catalysts as well as reducing the amount of Pt in the catalyst composition and maintaining the electrocatalytic activities at the anode. However, the influence of the Sn oxidation state in Pt–Sn/C catalysts surfaces and the alloy formation between Pt and Sn as well as with the atomic ratio on their catalytic activity towards ethanol oxidation appears minimal. Similar methodologies applied for synthesis of Ptx–Sny/C catalysts with a small change show differences with the results obtained, thus highlighting the importance of the conditions of the preparation method.
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.