970 resultados para small-signal angular stability
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches-a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493241]
Resumo:
X-ray multiple diffraction experiments with synchrotron radiation were carried out on pure and doped nonlinear optical crystals: NH(4)H(2)PO(4) and KH(2)PO(4) doped with Ni and Mn, respectively. Variations in the intensity profiles were observed from pure to doped samples, and these variations correlated with shifts in the structure factor phases, also known as triplet phases. This result demonstrates the potential of X-ray phase measurements to study doping in this type of single crystal. Different methodologies for probing structural changes were developed. Dynamical diffraction simulations and curve fitting procedures were also necessary for accurate phase determination. Structural changes causing the observed phase shifts are discussed.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ""equation of state"" of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ""Mach number"" is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ""optical ship waves"" (the wave pattern formed by a two-dimensional packet of linear waves) is situated. Analytical theory of the ""optical ship waves"" is developed and two-dimensional dark soliton solutions of the generalized two-dimensional nonlinear Schrodinger equation describing the light beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.
Resumo:
A correlated many-body basis function is used to describe the (4)He trimer and small helium clusters ((4)HeN) with N = 4-9. A realistic helium dimer potential is adopted. The ground state results of the (4)He dimer and trimer are in close agreement with earlier findings. But no evidence is found for the existence of Efimov state in the trimer for the actual (4)He-(4)He interaction. However, decreasing the potential strength we calculate several excited states of the trimer which exhibit Efimov character. We also solve for excited state energies of these clusters which are in good agreement with Monte Carlo hyperspherical description. (C) 2011 American Institute of Physics. [doi:10.1063/1.3583365]
Resumo:
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility gamma = e(-mu), where mu is the optical depth to Thomson scattering. We show that the contributions of order gamma(N) to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z >> 10(3), effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position (x) over right arrow = 0 and time t(0). Hence, for each multipole l there is a discrete tower of momenta k(il) (not a continuum) which can affect physical observables, with the smallest momenta being k(1l) similar to l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation-no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.
Resumo:
In this work we consider the evolution of a massive scalar field in cylindrically symmetric space-times. Quasinormal modes have been calculated for static and rotating cosmic cylinders. We found unstable modes in some cases. Rotating as well as static cosmic strings, i.e., without regular interior solutions, do not display quasinormal oscillation modes. We conclude that rotating cosmic cylinder space-times that present closed timelike curves are unstable against scalar perturbations.
Resumo:
Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C(l), this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C(l)'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l = 7 and l = 8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
The phase transition of Reissner-Nordstrom AdS(4) interacting with a massive charged scalar field has been further revisited. We found exactly one stable and one unstable quasinormal mode region for the scalar field. The two of them are separated by the first marginally stable solution.
Resumo:
The local site symmetry of Ce(3+) ions in the diluted magnetic semiconductors Pb(1-x)Ce(x)A (A=S, Se, and Te) has been investigated by electron-paramagnetic resonance (EPR). The experiments were carried out on single crystals with cerium concentration x ranging from 0.001 to 0.035. The isotropic line due to Ce(3+) ions located at the substitutional Pb cation site with octahedral symmetry was observed for all the studied samples. We determined the effective Lande factors to be g=1.333, 1.364, and 1.402 for A=S, Se, and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. In addition, EPR lines from Ce(3+) ions located at sites with small distortion from the original octahedral symmetry were also observed. Two distinct sites with axial distortion along the < 001 > crystallographic direction were identified and a third signal in the spectrum was attributed to sites with the cubic symmetry distorted along the < 110 > direction. The distortion at these distinct Ce sites is attributed to Pb lattice vacancies near the cerium ions that compensate for its donor activity.
Resumo:
We experimentally study the Aharonov-Bohm-conductance oscillations under external gate voltage in a semiconductor quantum ring with a radius of 80 nm. We find that, in the linear regime, the resistance-oscillation plot in the voltage-magnetic-field plane corresponds to the quantum ring energy spectra. The chessboard pattern assembled by resistance diamonds, while loading the ring, is attributed to a short electron lifetime in the open configuration, which agrees with calculations within the single-particle model. Remarkably, the application of a small dc current allows observing strong deviations in the oscillation plot from this pattern accompanied by a magnetic-field symmetry break. We relate such behavior to the higher-order-conductance coefficients determined by electron-electron interactions in the nonlinear regime.
Resumo:
We studied the effect of quantum confinement in Mn-doped InAs nanocrystals using theoretical methods. We observe that the stability of the impurities decreases with the size of the nanocrystals, making doping more difficult in small nanoparticles. Substitutional impurities are always more stable than interstitial ones, independent of the size of the nanocrystal. There is also a decrease in the energy difference between the high and low spin configurations, indicating that the critical temperature should decrease with the size of the nanoparticles, in agreement with experimental observations and in detriment to the development of functional spintronic devices with doped nanocrystals. Codoping with acceptors or saturating the nanocrystals with molecules that insert partially empty levels in the energy gap should be an efficient way to increase T(C).
Resumo:
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at the BNL Relativistic Heavy Ion Collider (RHIC). Pairs of back-to-back high-transverse-momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two-and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudorapidity Delta eta or relative azimuthal angle Delta phi from d + Au to central Au + Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.