908 resultados para projective geometry
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
We give a description of the dual varieties of all developables of osculating linear spaces to a projective curve in terms of the higher order dual varieties of the curve, in arbitrary characteristic. We also determine for these varieties the inseparable degrees of the projections from the conormal varieties onto their dual varieties.
Resumo:
The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.
Resumo:
In the context of the hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes. © SISSA/ISAS 2003.
Resumo:
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.
Resumo:
This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.
Resumo:
The external detector method (EDM) is a widely used technique in fission track thermochronology (FTT) in which two different minerals are concomitantly employed: spontaneous tracks are observed in apatite and induced ones in the muscovite external detector. They show intrinsic differences in detection and etching properties that should be taken into account. In this work, new geometry factor values, g, in apatite, were obtained by directly measuring the ρed/ρis ratios and independently determined [GQR]ed/is values through the measurement of projected lengths. Five mounts, two of which were large area prismatic sections and three samples composed of random-orientation pieces have been used to determine the g-values. A side effect of applying EDM is that the value of the initial confined induced fission track, L0, is not measured in routine analyses. The L 0-value is an important parameter to quantify with good confidence the degree of annealing of the spontaneous fission tracks in unknown-age samples, and is essential for accurate thermal history modeling. The impact of using arbitrary L0-values on the inference of sample thermal history is investigated and discussed. The measurement of the L0-value for each sample to be dated using an extra irradiated apatite mount is proposed. This extra mount can be also used for determining the g value as an extension of the ρed/ρis ratio method. Eight apatite samples from crystalline basement, with grains at random orientation, were used to determine the g-values. The results found are statistically in agreement with the values found for apatite samples (from Durango, Mexico) measured in prismatic section and also measured at random orientation. There was no observable variation in efficiency regarding crystal orientation, showing that it is relatively safe using non-prismatic grains, especially in samples with paucity of grains, as it is the case of most basin samples. Implications for the ζ-calibration and for the calibration of the direct (spectrometer-based) fission-track dating are also discussed.
Resumo:
The implementation of local geodetic networks for georeferencing of rural properties has become a requirement after publication of the Georeferencing Technical Standard by INCRA. According to this standard, the maximum distance of baselines to GNSS L1 receivers is of 20 km. Besides the length of the baseline, the geometry and the number of geodetic control stations are other factors to be considered in the implementation of geodetic networks. Thus, this research aimed to examine the influence of baseline lengths higher than the regulated limit of 20 km, the geometry and the number of control stations on quality of local geodetic networks for georeferencing, and also to demonstrate the importance of using specific tests to evaluate the solution of ambiguities and on the quality of the adjustment. The results indicated that the increasing number of control stations has improved the quality of the network, the geometry has not influenced on the quality and the baseline length has influenced on the quality; however, lengths higher than 20 km has not interrupted the implementation, with GPS L1 receiver, of the local geodetic network for the purpose of georeferencing. Also, the use of different statistical tests, both for the evaluation of the resolution of ambiguities and for the adjustment, have enabled greater clearness in analyzing the results, which allow that unsuitable observations may be eliminated.
Resumo:
This paper presents a study case in which a geosynthetic-reinforced soil (GRS) structure was used to rebuild a 12 m high slope after its failure. The failed slope is located between the parking lot of a private company and a public school. Due to surrounding structures restrictions, this project required a solution with rapidity in execution. In addition, as a requirement established by its owner, this structure should recover the original geometry of the slope. Besides the importance regarding surrounding constructions, an interesting aspect of this study case relies on the versatility of geosynthetic materials. A woven geotextile was used as reinforcement. Five other geosynthetic materials were used in this study case. Facing comprised a geocell filled with local soil cover and grass mats, resulting in a green facing. A geonet was used to hold the grass mats in place before grass roots development. Regarding the drainage system, geocomposite drains and geopipes were installed to drain subsurface water. A nonwoven geotextile was used as filter in drainage trenches, which were placed near the structure toe. Additionally to the GRS structure, the lower portion of the slope was reinforced with soil nailing technique. The face of the nailed soil portion was covered with sandbags and shotcrete. It emphasizes the flexibility of GRS structures regarding their application with other technical options in Geotechnical Engineering. The economic aspect of this study case also deserves attention. It did not require soil transportation and other design and construction steps, e.g. concrete structures design and construction.
Resumo:
Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we show that the electronic properties of multi-open dots structures are strongly modified by even smalt changes in their geometries. Our discussion of these effects is done in terms of the interaction among localized states (dot-like) and extended states (channel-like), from which a Fano resonance situation arises.
Resumo:
Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.