957 resultados para object orientated user interface
Resumo:
Predicting user behaviour enables user assistant services provide personalized services to the users. This requires a comprehensive user model that can be created by monitoring user interactions and activities. BaranC is a framework that performs user interface (UI) monitoring (and collects all associated context data), builds a user model, and supports services that make use of the user model. A prediction service, Next-App, is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts, based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic, reflecting the current context, and is also dynamic in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.
Resumo:
In this thesis, a machine learning approach was used to develop a predictive model for residual methanol concentration in industrial formalin produced at the Akzo Nobel factory in Kristinehamn, Sweden. The MATLABTM computational environment supplemented with the Statistics and Machine LearningTM toolbox from the MathWorks were used to test various machine learning algorithms on the formalin production data from Akzo Nobel. As a result, the Gaussian Process Regression algorithm was found to provide the best results and was used to create the predictive model. The model was compiled to a stand-alone application with a graphical user interface using the MATLAB CompilerTM.
Resumo:
To distinguish the components of NMR signals from hydrated materials and to monitor their evolution after the addition of water to the powders, during the first two days of hydration. To implement the 3 Tau Model in a MATLAB script, called 3TM, provided with a Graphical User Interface (GUI), to easily use the 3 Tau Model with NMRD profiles. The 3 Tau Model, developed a few years ago is used for interpreting the dispersion (NMRD profiles, dependence on the Larmor frequency) of the longitudinal relaxation times, for liquids confined in porous media. This model describes the molecular dynamics of confined molecules by introducing three characteristic correlation times and additional outputs.
Resumo:
Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.
Resumo:
In recent years, we have witnessed great changes in the industrial environment as a result of the innovations introduced by Industry 4.0, especially in the integration of Internet of Things, Automation and Robotics in the manufacturing field. The project presented in this thesis lies within this innovation context and describes the implementation of an Image Recognition application focused on the automotive field. The project aims at helping the supply chain operator to perform an effective and efficient check of the homologation tags present on vehicles. The user contribution consists in taking a picture of the tag and the application will automatically, exploiting Amazon Web Services, return the result of the control about the correctness of the tag, the correct positioning within the vehicle and the presence of faults or defects on the tag. To implement this application we ombined two IoT platforms widely used in industrial field: Amazon Web Services(AWS) and ThingWorx. AWS exploits Convolutional Neural Networks to perform Text Detection and Image Recognition, while PTC ThingWorx manages the user interface and the data manipulation.
Resumo:
The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.
Resumo:
Il presente lavoro di tesi ha lo scopo di implementare un modello previsionale del comportamento magnetico di leghe Fe-Si in regime statico e dinamico, mediante l’identificazione e l’ottimizzazione dei parametri caratteristici del modello di Jiles-Atherton. Tale fine è stato perseguito attraverso l’uso del software di calcolo Matlab-Simulink. Il modello, validato mediante i dati reperibili in letteratura, permette di simulare la curva di prima magnetizzazione e il ciclo di isteresi per materiali ferromagnetici soft mediante la conoscenza di un set limitato di dati sperimentali ricavabili dalle prove magnetiche. Il modello è stato impiegato per eseguire la simulazione anche su campioni prodotti industrialmente in acciaio al silicio a grano non orientato forniti allo stato fully-processed M470-50A preventivamente sottoposti a caratterizzazione microstrutturale, mediante microscopia ottica, elettronica e analisi EBSD, e meccanica, attraverso le prove di trazione. I risultati ottenuti dalla simulazione presentano ottimale accuratezza, in particolar modo nel caso statico sia in termini di estrazione dei parametri sia di definizione del ciclo; risulta ancora da migliorare ulteriormente il grafico in frequenza. Al fine di rendere fruibile il modello realizzato è stata progettata una Graphical User Interface. Nell’ottica di una mobilità green in accordo con gli obiettivi globali, l’implementazione del presente modello pone quindi le basi per uno studio futuro del comportamento dei materiali magnetici per la realizzazione di motori elettrici sempre più performanti in funzione dei parametri di produzione e delle condizioni di utilizzo, aspetti che incidono notevolmente sulle proprietà di tale materiale.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Resumo:
Research in the last four decades has brought a considerable advance in our understanding of how the brain synthesizes information arising from different sensory modalities. Indeed, many cortical and subcortical areas, beyond those traditionally considered to be ‘associative,’ have been shown to be involved in multisensory interaction and integration (Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest, because of the prominent role played by vision in guiding our actions and anticipating their tactile consequences in everyday life. In this chapter, we focus on the functional role that visuo-tactile processing may play in driving two types of body-object interactions: avoidance and approach. We will first review some basic features of visuo-tactile interactions, as revealed by electrophysiological studies in monkeys. These will prove to be relevant for interpreting the subsequent evidence arising from human studies. A crucial point that will be stressed is that these visuo-tactile mechanisms have not only sensory, but also motor-related activity that qualifies them as multisensory-motor interfaces. Evidence will then be presented for the existence of functionally homologous processing in the human brain, both from neuropsychological research in brain-damaged patients and in healthy participants. The final part of the chapter will focus on some recent studies in humans showing that the human motor system is provided with a multisensory interface that allows for continuous monitoring of the space near the body (i.e., peripersonal space). We further demonstrate that multisensory processing can be modulated on-line as a consequence of interacting with objects. This indicates that, far from being passive, the monitoring of peripersonal space is an active process subserving actions between our body and objects located in the space around us.
Resumo:
Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.
Resumo:
This paper presents a user experience evaluation of two online shopping websites from the perspective of older users (those aged 50 and older). Two online shopping websites were evaluated using methodological procedures established in prior research [1]. The methodology consists of four steps: (1) heuristic interface evaluation using an ergonomic criteria checklist, (2) online identification and experience questionnaire, (3) evaluation of user experience and interface interaction, and (4) satisfaction questionnaire. Results of the study revealed the analyzed websites are not suitable for older users, who find it difficult to interact with these interfaces.
Resumo:
This paper proposes an extension to the televisionwatching paradigm that permits an end-user to enrich broadcast content. Examples of this enriched content are: virtual edits that allow the order of presentation within the content to be changed or that allow the content to be subsetted; conditional text, graphic or video objects that can be placed to appear within content and triggered by viewer interaction; additional navigation links that can be added to structure how other users view the base content object. The enriched content can be viewed directly within the context of the TV viewing experience. It may also be shared with other users within a distributed peer group. Our architecture is based on a model that allows the original content to remain unaltered, and which respects DRM restrictions on content reuse. The fundamental approach we use is to define an intermediate content enhancement layer that is based on the W3C’s SMIL language. Using a pen-based enhancement interface, end-users can manipulate content that is saved in a home PDR setting. This paper describes our architecture and it provides several examples of how our system handles content enhancement. We also describe a reference implementation for creating and viewing enhancements.
Resumo:
We present a user supported tracking framework that combines automatic tracking with extended user input to create error free tracking results that are suitable for interactive video production. The goal of our approach is to keep the necessary user input as small as possible. In our framework, the user can select between different tracking algorithms - existing ones and new ones that are described in this paper. Furthermore, the user can automatically fuse the results of different tracking algorithms with our robust fusion approach. The tracked object can be marked in more than one frame, which can significantly improve the tracking result. After tracking, the user can validate the results in an easy way, thanks to the support of a powerful interpolation technique. The tracking results are iteratively improved until the complete track has been found. After the iterative editing process the tracking result of each object is stored in an interactive video file that can be loaded by our player for interactive videos.