977 resultados para nuclear resonance, medical diagnostic, lung
Resumo:
This paper reports the identification of di- and triglycosylated flavonoids from Sorocea bomplandii (Moraceae) by liquid chromatography coupled on-line to nuclear magnetic resonance (LC-NMR). These glycosylated flavonoids may be used as a taxonomic marker in future work. (C) 2002 Elsevier B.V. B.V All rights reserved.
Resumo:
Vitreous samples were prepared in the (100 - x)% NaPO3-x% MoO3 (0 <= x <= 70) glass-forming system by a modified melt method that allowed good optical quality samples to be obtained. The structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), Raman scattering, and solid-state nuclear magnetic resonance (NMR) for P-31, Na-23, and Mo-95 nuclei. Addition of MoO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures up to x = 45, suggesting a significant increase in network connectivity. For this same composition range, vibrational spectra suggest that the Mo6+ ions are bonded to some nonbridging oxygen atoms (Mo-O- or Mo=O bonded species). Mo-O-Mo bond formation occurs only at MoO3 contents exceeding x = 45. P-31 magic-angle spinning (MAS) NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. These sites are denoted as Q(2Mo)((2)), Q(1Mo)((2)), and Q(0Mo)((2)), respectively. For x < 0.45, the populations of these sites can be described along the lines of a binary model, according to which each unit of MoO3 converts two Q(nMo)((2)) sites into two Q((n+1)Mo)((2)) sites (n = 0, 1). This structural model is consistent with the presence of tetrahedral Mo(=O)(2)(O-1/2)(2) environments. Indeed, Mo-95 NMR data suggest that the majority of the molybdenum species are four-coordinated. However, the presence of additional six-coordinate molybdenum in the MAS NMR spectra indicates that the structure of these glasses may be more complicated and may additionally involve sharing of network modifier oxide between the network formers phosphorus and molybdenum. This latter hypothesis is further supported by Na-23{P-31} rotational echo double resonance (REDOR) data, which clearly reveal that the magnetic dipole-dipole interactions between P-31 and Na-23 are increasingly diminished with increasing molybdenum content. The partial transfer of modifier from the phosphate to the molybdate network former implies a partial repolymerization of the phosphate species, resulting in the formation of Q(nMo)((3)) species and accounting for the observed increase in the glass transition temperature with increasing MoO3 content that is observed in the composition range 0 <= x <= 45. Glasses with MoO3 contents beyond x = 45 show decreased thermal and crystallization stability. Their structure is characterized by isolated phosphate species [most likely of the P(OMo)(4) type] and molybdenum oxide clusters with a large extent of Mo-O-Mo connectivity.
Resumo:
Results of differential scanning calometry (DSC), x-ray diffraction (XRD), and F-19 nuclear magnetic resonance (NMR) of InF3-based glasses, treated at different temperatures, ranging from glass transition temperature (T-g) to crystallization temperature (T-c), are reported. The main features of the experimental results are as follows. DSC analysis emphasizes several steps in the crystallization process. Heat treatment at temperatures above T-g enhances the nucleation of the first growing phases but has little influence on the following ones. XRD results show that several crystalline phases are formed, with solid state transitions when heated above 680 K, the F-19 NMR results show that the spin-lattice relaxation, for the glass samples heat treated above 638 K, is described by two time constants. For samples treated below this temperature a single time constant T-1 was observed. Measurements of the F-19 spin-lattice relaxation time (T-1), as a function of temperature,made possible the identification of the mobile fluoride ions. The activation energy, for the ionic motion, in samples treated at crystallization temperature was found to be 0.18 +/- 0.01 eV. (C) 1998 American Institute of Physics.
Resumo:
Transparent siloxane-polymethylmethacrylate (PMMA) hybrids were synthesized by the sol-gel process through hydrolysis of methacryloxyproyltrimethoxysilane (TMSM), tetramethoxysilane (TMOS) and polymerization of methylmethacrylate (MMA) using benzol peroxide (BPO) as catalyst. These composites have a good chemical stability due to the presence of covalent bonds between the inorganic (siloxane) and organic (PMMA) phases. The effects of siloxane content, pH of the initial sol and BPO content on the structure of the dried gels were analyzed by small-angle X-ray scattering (SAXS). SAXS results revealed the presence of an interference (or correlation) peak at medium q-range for all compositions, suggesting that siloxane groups located at the ends of PMMA chains form isolated clusters that are spatially correlated. The average intercluster distance - estimated from the q-value corresponding to the maximum in SAXS spectra - decreases for samples prepared with increasing amount of TMSM-TMOS. This effect was assigned to the expected increase in the number density of siloxane groups for progressively higher siloxane content. The increase of BPO content promotes a more efficient polymerization of MMA monomers but has no noticeable effect on the average intercluster distance. High pH favors polycondensation reactions between silicon species of both TMOS and TMSM silicon alcoxides, leading to a structure in which all siloxane clusters are bonded to PMMA chains. This effect was confirmed by Si-29 nuclear-magnetic resonance (NMR) measurements.
Resumo:
The increased use of orofacial fillers in cosmetic procedures has led to new diagnostic challenges for dentists and oral pathologists. Here, we describe a case with multiple oral foreign body granulomas, which were formed after a polymethylmetacrylate injection for cosmetic purposes. © 2011 European Association for Cranio-Maxillo-Facial Surgery.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Nuclear Medicine is a medical specialty which uses different radioisotopes for diagnostic and therapeutic purposes. The isotopes are radioactive elements which are administered in vivo and present distribution to specific organs or cell types. The knowledge of radioactivity and notions related to ionizing radiation allow to contextualize the radiological protection measures to be taken in Nuclear Medicine. So it is possible to minimize unnecessary exposure to patients, the public, and individuals occupationally exposed and the environmental. For this it is necessary to relate the physical and technological bases apply to this mode with the standards established by regulatory agencies, including the CNEN (National Nuclear Energy Commission) and ANVISA (National Agency for Sanitary Vigilance). In this scenario, it is important that the theoretical endorse the activities which are periodically audited for verification of compliance with the standards that aim to radioprotection. One role of the Medical Physicist in these services is, therefore, act as Radiation Protection Supervisor exerting numerous activities and ensuring compliance with these standards. In this context the stage in the area of Nuclear Medicine was developed in many customers of the enterprise Rad Dimenstein & Associados LTDA, among them the hospitals Israelita Albert Einstein (HIAE), Nossa Senhora de Lourdes (HNSL), Santa Paula (HSP), Cruz Azul (CRAZ), Grupo Fleury, among other clinics. Following the routine and then carrying out various activities pertaining to the Medical Physicist in the area, it was noted that the measures and actions are extremely effective and fundamental in terms of radiological protection
Resumo:
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nuclear Medicine is a medical modality of therapy and diagnostic imaging using unsealed radioactive sources for its purposes. This routine activity promotes the transit of radioactive sources for the area of installation, beyond the transit of patients injected with radioisotope, which also contribute to raising the radiometric level of environment. As a consequence, it has exposured workers and public individuals to the ionizing radiation. There are protective mechanisms of radiation exposure, personal protective equipments, and measurement planes established in standard measurement at certain points of the environment in order to identify any increase in radiometric levels and \ or contamination, but do not cover the entire space occupied by workers and patients. To accomplish with the individual dose limits established by the National Commission of Nuclear Energy, it is interesting if there is an individualized classification for each Nuclear Medicine service. This work aimed to promote an analysis of the radiometric level distribution across the extent of the Technical Nuclear Medicine Sector of Hospital of the Botucatu Medical School, and produce a spatial map to identify locations with higher exposure rate to the ionizing radiation, can be used as a risk map to assist the Occupationally Exposed Individuals (IOE). To perform the radiometric levels checking it was used a digital Geiger-Muller detector available in the sector, due to its practicality compared to other detectors. Measurements were carried out at four different times for all days of the week, at points strategically established to cover all the installation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.
Resumo:
High intake of saturated fat from meats has been associated with cardiovascular disease, cancer, diabetes, and others diseases. In this paper, we are introducing a simple, high-throughput, and non-destructive low-resolution nuclear magnetic resonance method that has the potential to analyze the intramuscular fat content (IMF) in more than 1,000 beef portions per hour. The results can be used in nutritional fact labels, replacing the currently used average value. The method is based on longitudinal (T(1)) and transverse (T(2)) relaxation time information obtained by a continuous wave-free precession (CWFP) sequence. CWFP yields a higher correlation coefficient (r=0.9) than the conventional Carr-Purcell-Meiboom- Gill (CPMG) method (r=-0.25) for IMF in beef and is just as fast and a simpler pulse sequence than CPMG. The method can also be applied to other meat products.
Resumo:
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.