939 resultados para mathematical equation correction approach


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model describing dissociation of monoprotonic acid and a method for the determination of its pK value are presented. The model is based on a mean field approximation. The Poisson-Boltzmann equation, adopting spherical symmetry, is numerically solved, and the solution of its linearized form is written. By use of the pH values of a dilution experiment of galacturonic acid as the entry data, the proposed method allowed estimation of the value of pK = 3.25 at a temperature of 25 degrees C. Values for the complex dimensions and dissociation degree are calculated using experimental pH values for solution concentration values ranging from 0.1 to 60 mM. The present analysis leads to the conclusion that the Poisson-Boltzmann equation or its linear form is equally suited for the description of such systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Whitham modulation equations for the parameters of a periodic solution are derived using the generalized Lagrangian approach for the case of the damped Benjamin-Ono equation. The structure of the dispersive shock is considered in this method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with a link between central extensions of N = 2 superconformal algebra and a supersymmetric two-component generalization of the Camassa-Holm equation. Deformations of superconformal algebra give rise to two compatible bracket structures. One of the bracket structures is derived from the central extension and admits a momentum operator which agrees with the Sobolev norm of a co-adjoint orbit element. The momentum operator induces, via Lenard relations, a chain of conserved Hamiltonians of the resulting supersymmetric Camassa-Holm hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We intend to analyse the constraint structure of Teleparallelism employing the Hamilton-Jacobi formalism for singular systems. This study is conducted without using an ADM 3+1 decomposition and without fixing time gauge condition. It can be verified that the field equations constitute an integrable system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a relation between the Camassa-Holm equation and the non-local deformations of the sinh-Gordon equation is used to study some properties of the former equation. We will show that cuspon and soliton solutions can be obtained from soliton solutions of the deformed sinh-Gordon equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrodinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The algebraic matrix hierarchy approach based on affine Lie sl(n) algebras leads to a variety of 1 + 1 soliton equations. By varying the rank of the underlying sl(n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy.The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time Bows which distinguishes them From the conventional structure of the Darboux-Backlund-Wronskian solutions of the constrained KP hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of defects is discussed under the Lagrangian formalism and Backlund transformations for the N = 1 super sinh-Gordon model. Modified conserved momentum and energy are constructed for this case. Some explicit examples of different Backlund soliton solutions are discussed. The Lax formulation within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The negative-dimensional integration method is a technique which can be applied, with success, in usual covariant gauge calculations. We consider three two-loop diagrams: the scalar massless non-planar double-box with six propagators and the scalar pentabox in two cases, where six virtual particles have the same mass, and in the case all of them are massless. Our results are given in terms of hypergeometric functions of Mandelstam variables and also for arbitrary exponents of propagators and dimension D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of different kinds of solitary waves of the Camassa-Holm equation is investigated. We consider soliton-soliton, soliton-cuspon and cuspon-cuspon interactions. The description of these solutions had previously been shown to be reducible to the solution of an algebraic equation. Here we give explicit examples, numerically solving these algebraic equations and plotting the corresponding solutions. Further, we show that the interaction is elastic and leads to a shift in the position of the solitons or cuspons. We give the analytical expressions for this shift and represent graphically the coupled soliton-cuspon, soliton-soliton and cuspon-cuspon interactions.