797 resultados para learning classifier systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate, from a philosophical perspective, the relation between abductive reasoning and information in the context of biological systems. Emphasis is given to the organizational role played by abductive reasoning in practical activities of embodied embedded agency that involve meaningful information. From this perspective, meaningful information is provisionally characterized as a selforganizing process of pattern generation that constrains coherent action. We argue that this process can be considered as a part of evolutionarily developed learning abilities of organisms in order to help with their survival. We investigate the case of inorganic mechanical systems (like robots), which deal only with stable forms of habits, rather than with evolving learning abilities. Some difficulties are considered concerning the hypothesis that mechanical systems may operate with meaningful information, present in abductive reasoning. Finally, an example of hypotheses creation in the domain of medical sciences is presented in order to illustrate the complexity of abduction in practical reasoning concerning human activities. © 2007 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years there was an exponential growth in the offering of Web-enabled distance courses and in the number of enrolments in corporate and higher education using this modality. However, the lack of efficient mechanisms that assures user authentication in this sort of environment, in the system login as well as throughout his session, has been pointed out as a serious deficiency. Some studies have been led about possible biometric applications for web authentication. However, password based authentication still prevails. With the popularization of biometric enabled devices and resultant fall of prices for the collection of biometric traits, biometrics is reconsidered as a secure remote authentication form for web applications. In this work, the face recognition accuracy, captured on-line by a webcam in Internet environment, is investigated, simulating the natural interaction of a person in the context of a distance course environment. Partial results show that this technique can be successfully applied to confirm the presence of users throughout the course attendance in an educational distance course. An efficient client/server architecture is also proposed. © 2009 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for musical genre classification, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster for some applications. Experiments in two public datasets were conducted against Support Vector Machines and a Bayesian classifier to show the validity of our work. In addition, we have executed an experiment using very recent hybrid feature selection techniques based on OPF to speed up feature extraction process. © 2011 International Society for Music Information Retrieval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, considerable research work have been conducted towards finding fast and accurate pattern classifiers for training Intrusion Detection Systems (IDSs). This paper proposes using the so called Fuzzy ARTMAT classifier to detect intrusions in computer network. Our investigation shows, through simulations, how efficient such a classifier can be when used as the learning mechanism of a typical IDS. The promising evaluation results in terms of both detection accuracy and training duration indicate that the Fuzzy ARTMAP is indeed viable for this sort of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present the use of a learning object (CADILAG), developed to facilitate understanding data structure operations by using visual presentations and animations. The CADILAG allows visualizing the behavior of algorithms usually discussed during Computer Science and Information System courses. For each data structure it is possible visualizing its content and its operation dynamically. Its use was evaluated an the results are presented. © 2012 AISTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital data sets constitute rich sources of information, which can be extracted and evaluated applying computational tools, for example, those ones for Information Visualization. Web-based applications, such as social network environments, forums and virtual environments for Distance Learning, are good examples for such sources. The great amount of data has direct impact on processing and analysis tasks. This paper presents the computational tool Mapper, defined and implemented to use visual representations - maps, graphics and diagrams - for supporting the decision making process by analyzing data stored in Virtual Learning Environment TelEduc-Unesp. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant phenology has gained importance in the context of global change research, stimulating the development of new technologies for phenological observation. Digital cameras have been successfully used as multi-channel imaging sensors, providing measures of leaf color change information (RGB channels), or leafing phenological changes in plants. We monitored leaf-changing patterns of a cerrado-savanna vegetation by taken daily digital images. We extract RGB channels from digital images and correlated with phenological changes. Our first goals were: (1) to test if the color change information is able to characterize the phenological pattern of a group of species; and (2) to test if individuals from the same functional group may be automatically identified using digital images. In this paper, we present a machine learning approach to detect phenological patterns in the digital images. Our preliminary results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; and (2) different plant species present a different behavior with respect to the color change information. Based on those results, we suggest that individuals from the same functional group might be identified using digital images, and introduce a new tool to help phenology experts in the species identification and location on-the-ground. ©2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.