790 resultados para laser, fibre, ottiche, moduli, connettori, lenti
Resumo:
Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.
Resumo:
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 x 10(-2) Omega cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.
Resumo:
Metal matrix composites (MMCs) based on a zinc-27% aluminium alloy (ZA-27) were produced using a pressure infiltration technique. Preforms of alumina fibres and aluminosilicate fibres were used for reinforcement. Uniform distribution of fibres and satisfactory interfacial bonding were achieved. UTS, specific strength, hardness and wear resistance were improved significantly by the alumina fibre reinforcement, but UTS decreased when using aluminosilicate fibres for reinforcement mainly due to unavoidable clustering of particles in the fibre preforms. Structure-property relations have been analysed in all cases.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
A previous study on the tribological performance of a compression-moulded aramid fibre-phenolic resin composite, containing 30% continuous fibre, showed that this composite provides a reasonable combination of the friction coefficient and wear rate to be used as a friction component, such as a brake shoe. In the present work, the effect of sliding speed on the friction and wear behaviour of this composite has been investigated. The sliding experiments were conducted in a speed range of 0.1-6 m s(-1) at two normal pressure levels of 1.0 and 4.9 MPa. The coefficient of friction was found to be stable over a wide range of sliding speeds and normal pressures. The wear of the composite was found to be insensitive to changes in the speed in the higher speed range. The results have been supplemented with scanning electron micrographs to help understand possible friction and wear mechanisms.
Resumo:
Surface melting by a stationary, pulsed laser has been modelled by the finite element method. The role of the surface tension driven convection is investigated in detail. Numerical results are presented for a triangular laser pulse of durations 10, 50 and 200 ms. Though the magnitude of the velocity is high due to the surface tension forces, the present results indicate that a finite time is required for convection to affect the temperature distribution within the melt pool. The effect of convection is very significant for pulse durations longer than 10 ms.
Resumo:
Carbon fibres/particles can be satisfactory reinforcing material in polymer, ceramic and metal matrices. Carbon fibres/particles reinforced polymer matrix composites and ceramic matrix composites are being used extensively in critical areas of application, but carbon fibre - metal matrix composites have not reached that stage yet. This paper discusses the salient aspects of production and specific properties of carbon fibre/particle reinforced cast metal matrix composites. It is envisaged that these materials will find extensive applications where cost, weight and thermal expansion are the key factors.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.
Resumo:
A mathematical model describing the dynamics of mammalian cell growth in hollow fibre bioreactor operated in closed shell mode is developed. Mammalian cells are assumed to grow as an expanding biofilm in the extra-capillary space surrounding the fibre. Diffusion is assumed to be the dominant process in the radial direction while axial convection dominates in the lumen of the bioreactor. The transient simulation results show that steep gradients in the cell number are possible under the condition of substrate limitation. The precise conditions which result in nonuniform growth of cells along the length of the bioreactor are delineated. The effect of various operating conditions, such as substrate feed rate, length of the bioreactor and diffusivity of substrate in different regions of the bioreactor, on the bioreactor performance are evaluated in terms of time required to attain the steady-state. The rime of growth is introduced as a measure of effectiveness factor for the bioreactor and is found to be dependent on two parameters, a modified Peclet number and a Thiele modulus. Diffusion, reaction and/or convection control regimes are identified based on these two parameters. The model is further extended to include dual substrate growth limitations, and the relative growth limiting characteristics of two substrates are evaluated. (C) 1997 Elsevier Science Ltd.
Resumo:
Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.
Resumo:
The laser ablated barium strontium titanate (BST) thin films were characterized in terms of composition, structure, microstructure and electrical properties. Films deposited at 300 degrees C under 50 mTorr oxygen pressure and 3 J cm(-2) laser fluence and further annealed at 600 degrees C in flowing oxygen showed a dielectric constant of 467 and a dissipation factor of 0.02. The room-temperature current-voltage characteristics revealed a space charge limited conduction (SCLC) mechanism, though at low fields the effect of the electrodes was predominant. The conduction mechanism was thoroughly-investigated in terms of Schottky emission at low fields, and bulk-limited SCLC at high fields. The change over to the bulk-limited conduction process from the electrode-limited Schottky emission was, attributed to the process of tunneling through the electrode interface at high fields resulting into the lowering of the electrode contact resistance and consequently giving rise to a bulk limited conduction process. The predominance of SCLC mechanism in the films suggests that the bulk properties are only revealed if the depletion width at the electrode interface is thin enough to allow the tunneling process to take place. This condition is only favorable if the him thickness is high or if the doping concentration is high enough. In the present case the film thickness ranged from 0.3 to 0.7 mu m which was suitable to show the transition mentioned above. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Closed form solutions for a simultaneously AM and high-harmonic FM mode locked laser system is presented. Analytical expressions for the pulsewidth and pulsewidth-bandwidth products are derived in terms of the system parameters. The analysis predicts production of 17 ps duration pulses in a Nd:YAG laser mode locked with AM and FM modulators driven at 80 MHz and 1.76 GHz for 1 W modulator input power. The predicted values of the pulsewidth-bandwidth product lie between the values corresponding to the pure AM and FM mode locking values.