919 resultados para kidney calcification
Resumo:
Brushite is a well known precursor of calcium oxalate monohydrate, the main mineral found in kidney stones having a monoclinic crystal structure. Here, we present a new method for biomimicking brushite using a single tube diffusion technique for gel growth. Brushite crystals were grown by precipitation of calcium hydrogen phosphate hydrate in a gelatin/glutamic acid network. They are compared with those produced in gel in the presence of urea. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed a change of morphology by glutamic acid from spherulitic growth to plate-shaped and mushroom-like forms consisting of crystal plates and highly ordered prismatic needles, respectively. Furthermore, brushite crystals grown in a gelatin/glutamic acid/urea network showed needle-shaped morphology being different from other brushite growth forms. The XRD method showed that cell parameters for brushite specimens were slightly larger than those of the American Mineral Society reference structure. The mushroom-like biomimetic composite bears a strong resemblance to the brushite kidney stones which may open up new future treatment options for crystal deposition diseases. Hence, suitable diets from glutamic acid rich foods could be recommended to inhibit and control brushite kidney stones.
Resumo:
Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.
Resumo:
BACKGROUND: While previous studies suggest advantages of minimally invasive surgery in living donor nephrectomy, similar data are lacking for kidney transplant recipients. Our aim was to prospectively evaluate short- and long-term outcome for kidney transplant recipients, comparing a short transverse (ST) to a classical hockey-stick (HS) incision. METHODS: Sixty-six patients were randomized into two groups: ST vs. HS from January 2008 to May 2010. ST was defined as incision length ≤9 cm and HS as >14 cm. Perioperative data were collected, with evaluation of intra- and postoperative complications and quality of recovery (QoR) score. RESULTS: There were no significant differences in patient demographics, early or long-term postoperative pain. There were no significant differences in QoR scores between the ST and HS group. Predictive for a worse QoR was persisting incisional pain at the 30-month follow-up. Thirty-days mortality, morbidity, and long-term kidney function did not differ between the two groups (p = 1.00, p = 0.62 and p = 0.66, respectively). CONCLUSIONS: Patient satisfaction as well as graft function and patient mortality was not influenced by incision length. With patient and graft safety being paramount, especially in times of organ shortage, incision length should reflect the requirement for a successful transplantation and not be a measure of feasibility.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3–9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin’s effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.
Resumo:
The purpose of the study was to evaluate in vitro calcification potential among liposomes composed of phospholipids with variations in fatty acid chains and polar head groups. The liposome was also modified by utilizing mixed phospholipids, incorporation of different types of protein to the liposome, or complexing with various collagen preparations. The samples were then incubated in a metastable calcium phosphate solution for the proposed time period. Calcium and phosphate uptake were measured. Resulting precipitates were processed for x-ray diffraction and electron microscopy. Acidic phospholipid, Dioleoylphosphatidic acid and mixed phospholipids, Dioleoylphosphatidic acid/Dipalmitoylphosphatidylethanolamine liposomes calcified at a faster rate and to a greater degree than other phospholipids tested. The incorporation of polylysine, fibronectin, bone protein, or the complexing with collagen decreased the rate and amount of calcification. Electron microscopy demonstrated the similarity of the calcified collagen-liposome complex to the natural calcification matrix. These preparations may be used as a model to study the role of membrane lipids and collagen-phospholipid during the process of calcification.^ The in vivo study was designed to determine whether the potential existed for the promotion of bone healing by the synthetic liposome-collagen complex. The implant materials were modified to provide decreased antigenicity, biocompatability while maintaining their bone conduction properties. The samples were placed subcutaneously and/or subperiosteally and/or in 8 mm calvarium defects of adult rats. Histological and immunological studies demonstrated that the implant itself retained minimal antigenicity and did not inhibit bone formation. However, modification of the implant may contain the bone induction property and be utilized to stimulate bony healing. ^
Resumo:
The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.
Resumo:
Medial arterial calcification is accelerated in patients with CKD and strongly associated with increased arterial rigidity and cardiovascular mortality. Recently, a novel in vitro blood test that provides an overall measure of calcification propensity by monitoring the maturation time (T50) of calciprotein particles in serum was described. We used this test to measure serum T50 in a prospective cohort of 184 patients with stages 3 and 4 CKD, with a median of 5.3 years of follow-up. At baseline, the major determinants of serum calcification propensity included higher serum phosphate, ionized calcium, increased bone osteoclastic activity, and lower free fetuin-A, plasma pyrophosphate, and albumin concentrations, which accounted for 49% of the variation in this parameter. Increased serum calcification propensity at baseline independently associated with aortic pulse wave velocity in the complete cohort and progressive aortic stiffening over 30 months in a subgroup of 93 patients. After adjustment for demographic, renal, cardiovascular, and biochemical covariates, including serum phosphate, risk of death among patients in the lowest T50 tertile was more than two times the risk among patients in the highest T50 tertile (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1 to 5.4; P=0.04). This effect was lost, however, after additional adjustment for aortic stiffness, suggesting a shared causal pathway. Longitudinally, serum calcification propensity measurements remained temporally stable (intraclass correlation=0.81). These results suggest that serum T50 may be helpful as a biomarker in designing methods to improve defenses against vascular calcification.
Resumo:
In the general population, HDL cholesterol (HDL-C) is associated with reduced cardiovascular events. However, recent experimental data suggest that the vascular effects of HDL can be heterogeneous. We examined the association of HDL-C with all-cause and cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health study comprising 3307 patients undergoing coronary angiography. Patients were followed for a median of 9.9 years. Estimated GFR (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration eGFR creatinine-cystatin C (eGFRcreat-cys) equation. The effect of increasing HDL-C serum levels was assessed using Cox proportional hazard models. In participants with normal kidney function (eGFR>90 ml/min per 1.73 m(2)), higher HDL-C was associated with reduced risk of all-cause and cardiovascular mortality and coronary artery disease severity (hazard ratio [HR], 0.51, 95% confidence interval [95% CI], 0.26-0.92 [P=0.03]; HR, 0.30, 95% CI, 0.13-0.73 [P=0.01]). Conversely, in patients with mild (eGFR=60-89 ml/min per 1.73 m(2)) and more advanced reduced kidney function (eGFR<60 ml/min per 1.73 m(2)), higher HDL-C did not associate with lower risk for mortality (eGFR=60-89 ml/min per 1.73 m(2): HR, 0.68, 95% CI, 0.45-1.04 [P=0.07]; HR, 0.84, 95% CI, 0.50-1.40 [P=0.50]; eGFR<60 ml/min per 1.73 m(2): HR, 1.18, 95% CI, 0.60-1.81 [P=0.88]; HR, 0.82, 95% CI, 0.40-1.69 [P=0.60]). Moreover, Cox regression analyses revealed interaction between HDL-C and eGFR in predicting all-cause and cardiovascular mortality (P=0.04 and P=0.02, respectively). We confirmed a lack of association between higher HDL-C and lower mortality in an independent cohort of patients with definite CKD (P=0.63). In summary, higher HDL-C levels did not associate with reduced mortality risk and coronary artery disease severity in patients with reduced kidney function. Indeed, abnormal HDL function might confound the outcome of HDL-targeted therapies in these patients.
Resumo:
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a protein that is used in human medicine as a real-time indicator of acute kidney injury (AKI). HYPOTHESIS Dogs with AKI have significantly higher plasma NGAL concentration and urine NGAL-to-creatinine ratio (UNCR) compared with healthy dogs and dogs with chronic kidney disease (CKD). ANIMALS 18 healthy control dogs, 17 dogs with CKD, and 48 dogs with AKI. METHODS Over a period of 1 year, all dogs with renal azotemia were prospectively included. Urine and plasma samples were collected during the first 24 hours after presentation or after development of renal azotemia. Plasma and urine NGAL concentrations were measured with a commercially available canine NGAL Elisa Kit (Bioporto® Diagnostic) and UNCR was calculated. A single-injection plasma inulin clearance was performed in the healthy dogs. RESULTS Median (range) NGAL plasma concentration in healthy dogs, dogs with CKD, and AKI were 10.7 ng/mL (2.5-21.2), 22.0 ng/mL (7.7-62.3), and 48.3 ng/mL (5.7-469.0), respectively. UNCR was 2 × 10(-8) (0-46), 1,424 × 10(-8) (385-18,347), and 2,366 × 10(-8) (36-994,669), respectively. Dogs with renal azotemia had significantly higher NGAL concentrations and UNCR than did healthy dogs (P < .0001 for both). Plasma NGAL concentration was significantly higher in dogs with AKI compared with dogs with CKD (P = .027). CONCLUSIONS AND CLINICAL IMPORTANCE Plasma NGAL could be helpful to differentiate AKI from CKD in dogs with renal azotemia.
Resumo:
BACKGROUND No reliable tool to predict outcome of acute kidney injury (AKI) exists. HYPOTHESIS A statistically derived scoring system can accurately predict outcome in dogs with AKI managed with hemodialysis. ANIMALS One hundred and eighty-two client-owned dogs with AKI. METHODS Logistic regression analyses were performed initially on clinical variables available on the 1st day of hospitalization for relevance to outcome. Variables with P< or = .1 were considered for further analyses. Continuous variables outside the reference range were divided into quartiles to yield quartile-specific odds ratios (ORs) for survival. Models were developed by incorporating weighting factors assigned to each quartile based on the OR, using either the integer value of the OR (Model A) or the exact OR (Models B or C, when the etiology was known). A predictive score for each model was calculated for each dog by summing all weighting factors. In Model D, actual values for continuous variables were used in a logistic regression model. Receiver-operating curve analyses were performed to assess sensitivities, specificities, and optimal cutoff points for all models. RESULTS Higher scores were associated with decreased probability of survival (P < .001). Models A, B, C, and D correctly classified outcomes in 81, 83, 87, and 76% of cases, respectively, and optimal sensitivities/specificities were 77/85, 81/85, 83/90 and 92/61%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The models allowed outcome prediction that corresponded with actual outcome in our cohort. However, each model should be validated further in independent cohorts. The models may also be useful to assess AKI severity.
Resumo:
Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.