904 resultados para inverse Bergman rule
Resumo:
OBJECTIVES This study sought to evaluate the relationship between fibrosis imaged by delayed-enhancement (DE) magnetic resonance imaging (MRI) and atrial electrograms (Egms) in persistent atrial fibrillation (AF). BACKGROUND Atrial fractionated Egms are strongly related to slow anisotropic conduction. Their relationship to atrial fibrosis has not yet been investigated. METHODS Atrial high-resolution MRI of 18 patients with persistent AF (11 long-lasting persistent AF) was registered with mapping geometry (NavX electro-anatomical system (version 8.0, St. Jude Medical, St. Paul, Minnesota)). DE areas were categorized as dense or patchy, depending on their DE content. Left atrial Egms during AF were acquired using a high-density, 20-pole catheter (514 ± 77 sites/map). Fractionation, organization/regularity, local mean cycle length (CL), and voltage were analyzed with regard to DE. RESULTS Patients with long-lasting persistent versus persistent AF had larger left atrial (LA) surface area (134 ± 38 cm(2) vs. 98 ± 9 cm(2), p = 0.02), a higher amount of atrial DE (70 ± 16 cm(2) vs. 49 ± 10 cm(2), p = 0.01), more complex fractionated atrial Egm (CFAE) extent (54 ± 16 cm(2) vs. 28 ± 15 cm(2), p = 0.02), and a shorter baseline AF CL (147 ± 10 ms vs. 182 ± 14 ms, p = 0.01). Continuous CFAE (CFEmean [NavX algorithm that quantifies Egm fractionation] <80 ms) occupied 38 ± 19% of total LA surface area. Dense DE was detected at the left posterior left atrium. In contrast, the right posterior left atrium contained predominantly patchy DE. Most CFAE (48 ± 14%) occurred at non-DE LA sites, followed by 41 ± 12% CFAE at patchy DE and 11 ± 6% at dense DE regions (p = 0.005 and p = 0.008, respectively); 19 ± 6% CFAE sites occurred at border zones of dense DE. Egms were less fractionated, with longer CL and lower voltage at dense DE versus non-DE regions: CFEmean: 97 ms versus 76 ms, p < 0.0001; local CL: 153 ms versus 143 ms, p < 0.0001; mean voltage: 0.63 mV versus 0.86 mV, p < 0.0001. CONCLUSIONS Atrial fibrosis as defined by DE MRI is associated with slower and more organized electrical activity but with lower voltage than healthy atrial areas. Ninety percent of continuous CFAE sites occur at non-DE and patchy DE LA sites. These findings are important when choosing the ablation strategy in persistent AF.
Resumo:
OBJECTIVE Only limited data exists in terms of the incidence of intracranial bleeding (ICB) in patients with mild traumatic brain injury (MTBI). METHODS We retrospectively identified 3088 patients (mean age 41 range (7-99) years) presenting with isolated MTBI and GCS 14-15 at our Emergency Department who had undergone cranial CT (CCT) between 2002 and 2011. Indication for CCT was according to the "Canadian CT head rules." Patients with ICB were either submitted for neurosurgical treatment or kept under surveillance for at least 24 hours. Pearson's correlation coefficient was used to correlate the incidence of ICB with age, gender, or intake of coumarins, platelet aggregation inhibitors, or heparins. RESULTS 149 patients (4.8%) had ICB on CCT. No patient with ICB died or deteriorated neurologically. The incidence of ICB increased with age and intake of anticoagulants without clinically relevant correlation (R = 0.11; P < 0.001; R = -0.06; P < 0.001). CONCLUSION Our data show an incidence of 4.8% for ICB after MTBI. However, neurological deterioration after MTBI seems to be rare, and the need for neurosurgical intervention is only required in selected cases. The general need for CCT in patients after MTBI is therefore questionable, and clinical surveillance may be sufficient when CCT is not available.
Resumo:
BACKGROUND Assessment of pre-test probability of pulmonary embolism (PE) and prognostic stratification are two widely recommended steps in the management of patients with suspected PE. Some items of the Geneva prediction rule may have a prognostic value. We analyzed whether the initial probability assessed by the Geneva rule was associated with the outcome of patients with PE. METHODS In a post-hoc analysis of a multicenter trial including 1,693 patients with suspected PE, the all-cause death or readmission rates during the 3-month follow-up of patients with confirmed PE were analyzed. PE probability group was prospectively assessed by the revised Geneva score (RGS). Similar analyses were made with the a posteriori-calculated simplified Geneva score (SGS). RESULTS PE was confirmed in 357 patients and 21 (5.9%) died during the 3-month follow-up. The mortality rate differed significantly with the initial RGS group, as with the SGS group. For the RGS, the mortality increased from 0% (95% Confidence Interval: [0-5.4%]) in the low-probability group to 14.3% (95% CI: [6.3-28.2%]) in the high-probability group, and for the SGS, from 0% (95% CI: [0-5.4%] to 17.9% (95% CI: [7.4-36%]). Readmission occurred in 58 out of the 352 patients with complete information on readmission (16.5%). No significant change of readmission rate was found among the RGS or SGS groups. CONCLUSIONS Returning to the initial PE probability evaluation may help clinicians predict 3-month mortality in patients with confirmed PE. (ClinicalTrials.gov: NCT00117169).
Resumo:
In cranio-maxillofacial surgery, the determination of a proper surgical plan is an important step to attain a desired aesthetic facial profile and a complete denture closure. In the present paper, we propose an efficient modeling approach to predict the surgical planning on the basis of the desired facial appearance and optimal occlusion. To evaluate the proposed planning approach, the predicted osteotomy plan of six clinical cases that underwent CMF surgery were compared to the real clinical plan. Thereafter, simulated soft-tissue outcomes were compared using the predicted and real clinical plan. This preliminary retrospective comparison of both osteotomy planning and facial outlook shows a good agreement and thereby demonstrates the potential application of the proposed approach in cranio-maxillofacial surgical planning prediction.
Resumo:
BACKGROUND D-dimer levels are often elevated in renal insufficiency. The diagnostic accuracy of D-dimer to rule out pulmonary embolism in patients with renal insufficiency is unclear. METHODS We evaluated the data of patients presenting to our Emergency Department and receiving computed tomography angiography to rule out pulmonary embolism with measurement of D-dimer and creatinine. Glomerular filtration rate was calculated using the Chronic Kidney Disease Epidemiology Collaboration formula. RESULTS There were 1305 patients included; 1067 (82%) had an estimated glomerular filtration rate (eGFR) exceeding 60 mL/min, 209 (16%) 30-60 mL/min, and 29 (2%) <30 mL/min. One hundred fifty-two patients (12%) had D-dimer below 500 μg/L. eGFR (R = -0.1122) correlated significantly with D-dimer (P <.0001). One hundred sixty-nine patients (13%) were found to have pulmonary embolism. Sensitivity of D-dimer for patients with an eGFR >60 mL/min was 96% (confidence interval [CI], 0.93-0.99) and 100% (CI, 100-100) for those with 30-60 mL/min, while specificity decreased significantly with impaired renal function. Area under the curve of the receiver operating characteristic for D-dimer was 0.734 in patients with an eGFR of >60 mL/min, and 0.673 for 30-60 mL/min. CONCLUSIONS D-dimer levels were elevated in patients with an eGFR <60 mL/min, but proved to be highly sensitive for the exclusion of pulmonary embolism. However, because almost all patients with impaired renal function had elevated D-dimer irrespective of the presence of pulmonary embolism, studies should be performed to determine renal function-adjusted D-dimer cutoffs.
Resumo:
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish A¨ spo¨ Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2 +, 47Ca2 +and more strongly sorbing 86Rb+, 133Ba2 +, 137Cs+. Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.
Resumo:
We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.
Resumo:
Transmembrane domain orientation within some membrane proteins is dependent on membrane lipid composition. Initial orientation occurs within the translocon, but final orientation is determined after membrane insertion by interactions within the protein and between lipid headgroups and protein extramembrane domains. Positively and negatively charged amino acids in extramembrane domains represent cytoplasmic retention and membrane translocation forces, respectively, which are determinants of protein orientation. Lipids with no net charge dampen the translocation potential of negative residues working in opposition to cytoplasmic retention of positive residues, thus allowing the functional presence of negative residues in cytoplasmic domains without affecting protein topology.
Resumo:
A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.