928 resultados para heavy-quark effective theory
Resumo:
General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.
Resumo:
Is there a psychological basis for teaching and learning in the context of a liberal education, and if so, what might such a psychological basis look like? Traditional teaching and assessment often emphasize remembering facts and, to some extent, analyzing ideas. Such skills are important, but they leave out of the aspects of thinking that are most important not only in liberal education, but in life, in general. In this article, I propose a theory called WICS, which is an acronym for wisdom, intelligence, and creativity, synthesized. The basic idea underlying this theory is that, through liberal education, students need to acquire creative skills and attitudes to generate new ideas about how to adapt flexibly to a rapidly changing world, analytical skills and attitudes to ascertain whether these new ideas are good ones, practical skills and attitudes to implement the new ideas and convince others of their value, and wisdom-based skills and attitudes in order to ensure that the new ideas help to achieve a common good through the infusion of positive ethical values.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.
Resumo:
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite’s solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case. Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30–40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.
Resumo:
We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.
Resumo:
In the range of temperatures reached in future heavy ion collision experiments, hadronic pair annihilations and creations of charm quarks may take place within the lifetime of the plasma. As a result, charm quarks may increase the bulk viscosity affecting the early stages of hydrodynamic expansion. Assuming thermalisation, we estimate the charm contribution to bulk viscosity within the same effective kinetic theory framework in which the light parton contribution has been computed previously. The time scale at which this physics becomes relevant is related to the width of the transport peak associated with the trace anomaly correlator and is found to be ≲20 fm/c for T≳600 MeV.
Resumo:
We report an electrochemical gating approach with [similar]100% efficiency to tune the conductance of single-molecule 4,4′-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to “partial” resonance.
Resumo:
We determine the mass of the bottom quark from high moments of the bbproduction cross section in e+e−annihilation, which are dominated by the threshold region. On the theory side next-to-next-to-next-to-leading order (NNNLO) calculations both for the resonances and the continuum cross section are used for the first time. We find mPSb(2GeV) =4.532+0.013−0.039GeVfor the potential-subtracted mass and mMSb(mMSb) =4.193+0.022−0.035GeVfor the MSbottom-quark mass.
Resumo:
In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.
Resumo:
Background: ASSIP is a manualized brief therapy based on a model of suicide as goal-directed action, aimed at establishing a therapeutic alliance in a patient-oriented, collaborative approach. The main goals of the three-session program ASSIP are for patients to understand, from an observer’s position, patterns leading to a suicidal crisis, recognize triggers and warning signs, and to establish individual safety strategies for future suicidal crises. An ongoing therapeutic support is provided with regular letters over 24 months. Method: The study was conducted in a naturalistic setting. 120 Patients were randomly assigned to an intervention group (60 participants) treated with ASSIP combined with follow-up contact through letters, and a control group (60 participants) receiving a single session of clinical assessment. Both groups had treatment as usual. Patients completed a set of psychosocial and clinical questionnaires every six months over a period of 24 months. Results: In the ASSIP group 5 patients made a total of 5 reattempts, compared to 15 patients with 41 reattempts in the control group. The survival analysis yielded a significant difference with a Wald Chi2 of .000003. The ASSIP group had significantly lower suicidal ideation and fewer days of inpatient treatment compared to the control group. Higher scores in the Penn Helping Alliance Questionnaire were associated with lower suicidal ideation during follow-up. Conclusions: ASSIP is a highly effective brief therapy for patients with recent suicide attempts. Forming a strong therapeutic alliance is considered to be a major factor for outcome. ASSIP can be used with minimal training by experienced therapists. An English version of the manual will be published in May 2015.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.