993 resultados para gram-negativa
Resumo:
This study conducted in 1999/2000 was designed to evaluate the efficacy of praziquantel against Schistosoma japonicum in an area with repeated chemotherapy (Area A) compared with a newly identified endemic focus (Area B) in Hunan Province, China. The population size was 2015 and 2180 in Areas A and B, respectively, of which 1129 and 1298 subjects received stool examination. A total of 230 subjects were identified by the Kato-Katz technique (4 smears per person) as being infected with S. japonicum, 124 in Area A (prevalence 11 %) and 106 in Area B (prevalence 8.2%). They were treated with a single oral dose of praziquantel (40 mg/kg) in the non-transmission season. A follow-up stool examination was made 50 days after treatment. Among the 220 cases followed, 22 were found stool-egg-positive, with an overall cure rate of 90 %, and 99 % reduction of infection intensity (eggs per gram stool). No significant difference was found in cure rates between the 2 areas (89.7% vs 90.3%). The efficacy of the drug in the area with repeated chemotherapy was not significantly different from that in the newly identified endemic focus. This study, therefore, suggests that the efficacy of praziquantel against S. japonicum has not changed in the Dongting Lake region after more than 14 years of mass chemotherapy, and there is no evidence of tolerance or resistance of S. japonicum against praziquantel.
Resumo:
Chryseobacteria are gram negative organisms, formerly known as Flavobacteria, which rarely cause infections of burn wounds. This article documents three casts of Chryseobacterium infection in burn wounds and adds to the other two cases that have been reported in English literature. Two patients died, with one of the deaths linked to a Chryseobacteria bacteraemia. In two patients, there was an associated history of first aid treatment with untreated water. Patients whose burn wounds are suspected to be infected with Chryseobacterium require wound excision and coverage in combination with antibiotic therapy such as ciprofloxacin, vancomycin and rifampicin. (C) 2001 Elsevier Science Ltd and ISBI. All rights reserved.
Resumo:
Utilizing an in vitro laminitis explant model, we have investigated how bacterial broth cultures and purified bacterial proteases activate matrix metalloproteinases (MMPs) and alter structural integrity of cultured equine lamellar hoof explants. Four Gram-positive Streptococcus spp. and three Gram-negative bacteria all induced a dose-dependent activation of MMP-2 and MMP-9 and caused lamellar explants to separate. MMP activation was deemed to have occurred if a specific MMP inhibitor, batimastat, blocked MMP activity and prevented lamellar separation. Thermolysin and streptococcal pyrogenic exotoxin B (SpeB) both separated explants dose-dependently but only thermolysin was inhibitable by batimastat or induced MMP activation equivalent to that seen with bacterial broths. Additionally, thermolysin and broth MMP activation appeared to be cell dependent as MMP activation did not occur in isolation. These results suggest the rapid increase in streptococcal species in the caecum and colon observed in parallel with carbohydrate induced equine laminitis may directly cause laminitis via production of exotoxin(s) capable of activating resident MMPs within the lamellar structure. Once activated, these MMPs can degrade key components of the basement membrane (BM) hemidesmosome complex, ultimately separating the BM from the epidermal basal cells resulting in the characteristic laminitis histopathology of hoof lamellae. While many different causative agents have been evaluated in the past, the results of this study provide a unifying aetiological mechanism for the development of carbohydrate induced equine laminitis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The ultrastructural features of Macropodinium moiri were investigated. The somatic cortex is composed of two lateral non-ciliated zones covered with trapezoidal plates and separated by a trough-like dorsoventral groove (DVG) which divides the cell into left and right halves. The somatic kineties occupy the margins of the DVG and are composed of monokinetids whose infraciliature shows a typical litostome pattern. The pellicular plates are lamellate, and separated by V-shaped grooves which are lined by thick-walled vacuoles. The DVG cortex is composed of electron-opaque U-shaped ribs which alternate with electron-lucent saccular structures. The DVG surface is composed of small regular pellicular sacs built up to form the ridges of the dorsal DVG. The vestibulum forms a laterally compressed cone with left/right differentiation. The basal section of its non-ciliated right side is internally lined (outer to innermost) by longitudinal fibres, nematodesmata and transverse microtubular ribbons. The left side bears the vestibular kineties and in its basal section is lined (outer to innermost) by small nematodesmata and transverse tubules. Cytoplasmic organelles include endoplasmic reticulum, starch granules and a single contactile vacuole surrounded by patches of nephridioplasm. Hydrogenosomes are absent and coccoid Gram-positive bacteria lie under the ciliated portions of the cell. This set of characteristics differs significantly from those of the all other trichostomes; Macropodiniidae is therefore designated Trichostomatia incertae sedis. A revised familial diagnosis of the Macropodiniidae is proposed.
Resumo:
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general.
Resumo:
Conditions have been developed for genetic transformation and insertional mutagenesis in Leifsonia xyli subsp. xyli (Lxx), the causal organism of ratoon stunting disease (RSD), one of the most damaging and intractable diseases of sugarcane internationally. Transformation frequencies ranged from 1 to 10 colony forming units (CFU)/mug of plasmid DNA using Clavibacter/Escherichia coli shuttle vectors pCG188, pDM302, and pDM306 and ranged from 50 to 500 CFU/mug using cosmid cloning vectors pLAFR3 and pLAFR5-km. The transformation/transposition frequency was 0 to 70 CFU/mug of DNA, using suicide vectors pUCD623 and pSLTP2021 containing transposable elements Tn4431 and Tn5, respectively. It was necessary to grow Lxx in media containing 0.1% glycine for electroporation and to amplify large plasmids in a dam(-)/dcm(-) E. coli strain and purify the DNA by anion exchange. To keep selection pressure at an optimum, the transformants were grown on nitrocellulose filters (0.2-mum pore size) on media containing the appropriate antibiotics. Transposon Tn4431 containing a promoterless lux operon from Vibrio fischeri and a tetracycline-resistance gene was introduced on the suicide vector pUCD623. All but 1% of the putative transposon mutants produce light, indicating transposition into functional Lxx genes. Southern blot analysis of these transformants indicates predominantly single transposon insertions at unique sites. The cosmid cloning vector pLAFR5-km was stably maintained in Lxx. The development of a transformation and transposon mutagenesis system opens the way for molecular analysis of pathogenicity determinants in Lxx.
Resumo:
Two series of benzimidazole derivatives were sythesised. The first one was based on 5,6-dinitrobenzimidazole, the second one comprises 2-thioalkyl- and thioaryl-substituted modified benzimidazoles. Antibacterial and antiprotozoal. activity of the newly obtained compounds was studied. Some thioalkyl derivatives showed remarkable activity against nosocomial strains of Stenotrophomonas malthophilia, and an activity comparable to that of metronidazole against Gram-positive and Gram-negative bacteria. Of the tested compounds, 5,6-dichloro-2-(4-nitrobenzylthio)-benzimidazole showed the most distinct antiprotozoal activity.
Resumo:
Aims: To identify the predominant lactic acid producing bacteria in the small intestine, caecum and the rectum of the healthy pig. Methods and Results: Samples obtained from the large intestine of healthy pigs post-mortem were cultured using a modified agar-MRS medium in roll tubes. Thirteen isolates were selected on the basis of their morphological characteristics and Gram stain reaction for gene sequencing. These isolates were characterized by DNA sequence analysis of 16S rDNA. Eight isolates were identified as Lactobacillus ruminis , two as Enterococcus faecium , one as Mitsuokella multiacidus and two as Escherichia coli . Conclusion: This is the first report of Lact. ruminis as the dominant lactic acid bacteria in the large intestine of the pig. Significance and Impact of the Study: The results suggest that Lact. ruminis is a dominant bacterium in the large intestine of the healthy pig. Future work should focus on the role of this bacterium in relation to the physiological function of the intestine and the health of the animal.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A molecular approach was used to investigate a recently described candidate division of the domain Bacteria, TM7, currently known only from environmental 16S ribosomal DNA sequence data, A number of TM7-specific primers and probes were designed and evaluated. Fluorescence in situ hybridization (FISH) of a laboratory scale bioreactor using two independent TM7-specific probes revealed a conspicuous sheathed-filament morphotype, fortuitously enriched in the reactor. Morphologically, the filament matched the description of the Eikelboom morphotype 0041-0675 widely associated with bulking problems in activated-sludge wastewater treatment systems. Transmission electron microscopy of the bioreactor sludge demonstrated that the sheathed-filament morphotype had a typical gram-positive cell envelope ultrastructure. Therefore, TM7 is only the third bacterial lineage recognized to have gram-positive representatives. TM7-specific FISH analysis of two full-scale wastewater treatment plant sludges, including the one used to seed the laboratory scale reactor, indicated the presence of a number of morphotypes, including sheathed filaments. TM7-specific PCR clone libraries prepared from the two full-scale sludges yielded 23 novel TM7 sequences. Three subdivisions could be defined based on these data and publicly available sequences. Environmental sequence data and TM7-specific FISH analysis indicate that members of the TM7 division are present in a variety of terrestrial, aquatic, and clinical habitats. A highly atypical base substitution (Escherichia coli position 912; C to U) for bacterial 16S rRNAs was present in almost all TM7 sequences, suggesting that TM7 bacteria, like Archaea, may be streptomycin resistant at the ribosome level.
Resumo:
We isolated bacteria from ticks, lice and fleas. Partial small subunit rRNA sequences were obtained for each isolate and the closest matches in the FastA database were determined. These bacteria were mostly Gram-positive (Firmicutes), although representatives from the Proteobacteria (alpha, beta, gamma subdivisions) and CFB group were also isolated. Most of the isolates we found were from genera that were present in most of the ectoparasites studied, but a few genera were restricted to one species of ectoparasite. The most commonly isolated genera were Stenotrophomonas, Staphylococcus, Pseudomonas, Acinetobacter and Bacillus. Species of Bacillus and Proteus, which have biopesticide potential, were found in some of these ectoparasites. Overall, the communities of bacteria were similar to those found in other studies of parasitic arthropods.
Resumo:
A regulatory protein, PpaA, involved in photosystem formation in the anoxygenic phototrophic proteobacterium Rhodobacter sphaeroides has been identified and characterized in vivo. Based on the phenotypes of cells expressing the ppaA gene in extra copy and on the phenotype of the ppaA null mutant, it was concluded that PpaA activates photopigment production and puc operon expression under aerobic conditions. This is in contrast to the function of the PpaA homologue from Rhodobacter capsulatus, AerR, which acts as a repressor under aerobic conditions [Dong, C., Elsen, S., Swem, L. R. & Bauer, C. E. (2002). J Bacteriol 184, 2805-2814]. The expression of the ppaA gene increases several-fold in response to a decrease in oxygen tension, suggesting that the PpaA protein is active under conditions of low or no oxygen. However, no discernible phenotype of a ppaA null mutant was observed under anaerobic conditions tested thus far. The photosystem gene repressor PpsR mediates repression of ppaA gene expression under aerobic conditions. Sequence analysis of PpaA homologues from several anoxygenic phototrophic bacteria revealed a putative corrinoid-binding domain. It is suggested that PpaA binds a corrinoid cofactor and the availability or structure of this cofactor affects PpaA activity.
Resumo:
In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis (3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.