926 resultados para genomic fingerprinting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. METHODS We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. RESULTS A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. CONCLUSIONS The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Genet Med advance online publication 14 January 2016Genetics in Medicine (2016); doi:10.1038/gim.2015.167.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mortality owing to liver cancer has increased in the past 20 years, and the latest estimates indicate that the global health burden of this disease will continue to grow. Most patients with hepatocellular carcinoma (HCC) are still diagnosed at intermediate or advanced disease stages, where curative approaches are often not feasible. Among the treatment options available, the molecular targeted agent sorafenib is able to significantly increase overall survival in these patients. Thereafter, up to seven large, randomized phase III clinical trials investigating other molecular therapies in the first-line and second-line settings have failed to improve on the results observed with this agent. Potential reasons for this include intertumour heterogeneity, issues with trial design and a lack of predictive biomarkers of response. During the past 5 years, substantial advances in our knowledge of the human genome have provided a comprehensive picture of commonly mutated genes in patients with HCC. This knowledge has not yet influenced clinical decision-making or current clinical practice guidelines. In this Review the authors summarize the molecular concepts of progression, discuss the potential reasons for clinical trial failure and propose new concepts of drug development, which might lead to clinical implementation of emerging targeted agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized prostate cancer (PCa) is a clinically heterogeneous disease, which presents with variability in patient outcomes within the same risk stratification (low, intermediate or high) and even within the same Gleason scores. Genomic tools have been developed with the purpose of stratifying patients affected by this disease to help physicians personalize therapies and follow-up schemes. This review focuses on these tissue-based tools. At present, four genomic tools are commercially available: Decipher™, Oncotype DX®, Prolaris® and ProMark®. Decipher™ is a tool based on 22 genes and evaluates the risk of adverse outcomes (metastasis) after radical prostatectomy (RP). Oncotype DX® is based on 17 genes and focuses on the ability to predict outcomes (adverse pathology) in very low-low and low-intermediate PCa patients, while Prolaris® is built on a panel of 46 genes and is validated to evaluate outcomes for patients at low risk as well as patients who are affected by high risk PCa and post-RP. Finally, ProMark® is based on a multiplexed proteomics assay and predicts PCa aggressiveness in patients found with similar features to Oncotype DX®. These biomarkers can be helpful for post-biopsy decision-making in low risk patients and post-radical prostatectomy in selected risk groups. Further studies are needed to investigate the clinical benefit of these new technologies, the financial ramifications and how they should be utilized in clinics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory effects of VSV infection on MuLV production were investigated using the VSV temperature-sensitive mutants t1B17(I & V), tsT1026(I), tsG22(II), and ts052(II). At the permissive temperature, all four mutants suppressed the release of virion-associated MuLV gRNA by approximately 98% within 0.5 to 2.5 hr post infection. At the restrictive temperature and in the absence of cell killing, infection with t1B17(I & V) inhibited the release of MuLV gRNA, while tsT1026(I) and tsG22(II) did not. In contrast, ts052(II) inhibited the release of MuLV gRNA and induced cell killing. During the same time period and at either temperature, all four mutants did not suppress either MuLV-associated protein release or intracellular MuLV sRNA synthesis. These results indicate that VSV inhibits MULV gRNA release at a level somewhere between the synthesis and release of newly synthesized gRNA.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many diseases associated with the expansion of DNA repeats in humans. Myotonic dystrophy type 2 is one of such diseases, characterized by expansions of a (CCTG)•(CAGG) repeat tract in intron 1 of zinc finger protein 9 (ZNF9) in chromosome 3q21.3. The DM2 repeat tract contains a flanking region 5' to the tract that consists of a polymorphic repetitive sequence (TG)14-25(TCTG)4-11(CCTG) n. The (CCTG)•(CAGG) repeat is typically 11-26 repeats in persons without the disease, but can expand up to 11,000 repeats in affected individuals, which is the largest expansion seen in DNA repeat diseases to date. This DNA tract remains one of the least characterized disease-associated DNA repeats, and mechanisms causing the repeat expansion in humans have yet to be elucidated. Alternative, non B-DNA structures formed by the expanded repeats are typical in DNA repeat expansion diseases. These sequences may promote instability of the repeat tracts. I determined that slipped strand structure formation occurs for (CCTG)•(CAGG) repeats at a length of 42 or more. In addition, Z-DNA structure forms in the flanking human sequence adjacent to the (CCTG)•(CAGG) repeat tract. I have also performed genetic assays in E. coli cells and results indicate that the (CCTG)•(CAGG) repeats are more similar to the highly unstable (CTG)•(CAG) repeat tracts seen in Huntington's disease and myotonic dystrophy type 1, than to those of the more stable (ATTCT)•(AGAAT) repeat tracts of spinocerebellar ataxia type 10. This instability, however, is RecA-independent in the (CCTG)•(CAGG) and (ATTCT)•(AGAAT) repeats, whereas the instability is RecA-dependent in the (CTG)•(CAG) repeats. Structural studies of the (CCTG)•(CAGG) repeat tract and the flanking sequence, as well as genetic selection assays may reveal the mechanisms responsible for the repeat instability in E. coli, and this may lead to a better understanding of the mechanisms contributing to the human disease state. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the resulting lack of human genetic model system renders their functional studies difficult. In this study, I established isogenic human FANCM- and FAAP24-null mutants through homologous replacement-mediated gene targeting in HCT-116 cells, and systematically investigated the functions of FANCM and FAAP24 inchromosome stability, FA pathway activation, DNA damage checkpoint signaling, and ICL repair. I found that the FANCM-/-/FAAP24-/- double mutant was much more sensitive to DNA crosslinking agents than FANCM-/- and FAAP24-/- single mutants, suggesting that FANCM and FAAP24 possess epistatic as well as unique functions in response to ICL damage. I demonstrated that FANCM and FAAP24 coordinately support the activation of FA pathway by promoting chromatin localization of FA core complex and FANCD2 monoubiqutination. They also cooperatively function to suppress sister chromatid exchange and radial chromosome formation, likely by limiting crossovers in recombination repair. In addition, I defined novel non-overlapping functions of FANCM and FAAP24 in response to ICL damage. FAAP24 plays a major role in activating ICL-induced ATR-dependent checkpoint, which is independent of its interaction with FANCM. On the other hand, FANCM promotes recombination-independent ICL repair independently of FAAP24. Mechanistically, FANCM facilitates recruitment of nucleotide excision repair machinery and lesion bypass factors to ICL damage sites through its translocase activity. Collectively, my studies provide mechanistic insights into how genome integrity is both coordinately and independently protected by FANCM and FAAP24.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometrial cancer is the most common gynecological malignancy and the fourth most frequently diagnosed cancer among women. The molecular changes that distinguish normal endometrium from endometrial carcinoma are not thoroughly understood. Identification of these changes could potentially aid in identifying at-risk women who are especially prone to develop endometrial cancer, such as obese women and women with Lynch Syndrome. A microarray analysis was performed using normal endometrium from thin and obese women and cancerous endometrium from obese women. We validated the differential expression of ten genes whose expression was significantly up-regulated or down-regulated using qRT-PCR. All of the genes had distinct expression levels depending on the endometrial carcinoma histotype. As a result, they could serve as molecular markers to distinguish between normal endometrium and endometrial cancer, as well as between low grade endometrial carcinomas and high grade endometrial carcinomas. Two of the ten genes validated, HEYL and HES1, are down-stream targets of the Notch signaling pathway. HEYL and HES1 were identified by microarray and qRT-PCR to have a significant decrease in expression in endometrial carcinomas compared to normal endometrium. We further analyzed the differential expression of other components of the Notch signaling pathway, Notch4 and Jagged1. They were also identified by qRT-PCR to be significantly down-regulated in endometrial carcinomas compared to normal endometrium. Therefore, we believe the Notch signaling pathway to act as a tumor suppressor in endometrial carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps, and upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis were used to characterize more than 200 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. The bacterial biofilm consisted predominantly of Alpha-, Gamma- and Deltaproteobacteria, as well as Cyanobacteria, Flavobacteriia and Cytophaga, whereas putative settlement-inducing taxa only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous with approximately 25% shared operational taxonomic units between samples. Among the observed environmental parameters, pH only had a weak effect on community composition (R² ~ 1%) and did not affect community richness and evenness. In contrast, there were strong differences between upper and lower surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms than changes in seawater pH.