879 resultados para genetic research
Resumo:
Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences.
Resumo:
Dispersal and recruitment are central processes that shape the geographic and temporal distributions of populations of marine organisms. However, significant variability in factors such as reproductive output, larval transport, survival, and settlement success can alter the genetic identity of recruits from year to year. We designed a temporal and spatial sampling protocol to test for genetic heterogeneity among adults and recruits from multiple time points along a similar to 400 km stretch of the Oregon (USA) coastline. In total, 2824 adult and recruiting Balanus glandula were sampled between 2001 and 2008 from 9 sites spanning the Oregon coast. Consistent with previous studies, we observed high mitochondrial DNA diversity at the cytochrome oxidase I locus (884 unique haplotypes) and little to no spatial genetic population structure among the 9 sites (Phi(ST) = 0.00026, p = 0.170). However, subtle but significant temporal shifts in genetic composition were observed among year classes (Phi(ST) = 0.00071, p = 0.035), and spatial Phi(ST) varied from year to year. These temporal shifts in genetic structure were correlated with yearly differences in the strength of coastal upwelling (p = 0.002), with greater population structure observed in years with weaker upwelling. Higher levels of barnacle settlement were also observed in years with weaker upwelling (p < 0.001). These data suggest the hypothesis that low upwelling intensity maintains more local larvae close to shore, thereby shaping the genetic structure and settlement rate of recruitment year classes.
Resumo:
ABSTRACT: Clostridium chauvoei is the causative agent of blackleg, a wide spread serious infection of cattle and sheep with high mortality. In this study we have analyzed the sialidase activity of the NanA protein of C. chauvoei and cloned the sialidase gene nanA. Sialidase is encoded as a precursor protein of 722 amino acids with a 26 amino acid signal peptide. The mature sialidase has a calculated molecular mass of 81 kDa and contains the carbohydrate binding module 32 (CBM32, or F5/8 type C domain), the sialic acid binding module CBM40 and the enzymatically active sialidase domain found in all pro- and eukaryotic sialidases. Sialidase activity does not require the CBM32 domain. The NanA protein is secreted by C. chauvoei as a dimer. The nanA gene was found to be conserved and sialidase activity was found in C. chauvoei strains isolated over a period of 50 years from various geographical locations. Antiserum directed against a recombinant 40 kDa peptide containing CBM40 and part of the enzymatically active domain of NanA neutralized the secreted sialidase activity of all C. chauvoei strains tested.
Resumo:
Autism spectrum disorders (ASD) are pervasive developmental disorders that affect approximately 1 in 50 children (Blumberg et al., 2013). Due to the social nature of the deficits that characterize the disorders, many have classified them as disorders of social cognition, which is the process that individuals use in order to successfully interact with members of their own species (Frith & Frith, 2007). Previous research has typically neglected the spectrum nature of ASD in favor of a more categorical approach of ¿autistic¿ versus ¿non-autistic,¿ but the spectrum requires a more continuous approach. Thus, the present study sought to examine the genetic, social-cognitive, and neural correlates of ASD-like traits as well as the relationship between these dimensions in typically developing children. Parents and children completed several quantitative measures examining several areas of social-cognitive functioning, including theory of mind and social functioning, restricted/repetitive behaviors and interests, and adaptive/maladaptive functioning. Children were also asked to undergo an EEG and both parents and children contributed a saliva sample that was used to sequence four single nucleotide polymorphisms (SNPs) of the OXTR gene, rs1042778, rs53576, rs2254298, and rs237897. We successfully demonstrated a significant relationship between behavioral measures of social-cognition and differences in face perception via the N170. However, the directionality of these relationships varied based on the behavioral measure and particular N170 difference scores. We also found support for the associations between the G_G allelic combination of rs1042778 and the A_A and A_G allelic combinations of rs2254298 and increased ASD-like behavior with decreased social-cognitive functioning. In contrast, our results contradict previous findings with rs237897 and imply that individuals with the A_A and A_G genotypes are less similar to those with ASD and have higher social cognitive functioning than those with the G_G genotype. In conclusion, we have demonstrated the existence of ASD-like traits in typically developing children and have shown a link between behavioral, genetic, and neural correlates of social-cognition. These findings demonstrate the importance of considering autism as a spectrum disorder and provide support for the move to a more continuous approach to neurodevelopmental disorders.
Resumo:
PPARγ is a nuclear receptor that regulates numerous pathways including cytokine expression and immune responses and plays an important role in controlling colon inflammation. We aimed at determining the occurring PPARγ SNPs, at predicting the haplotypes, and at determining the frequency outcome in inflammatory bowel disease (IBD) patients in comparison with healthy controls. We determined genetic variants in the coding exons and flanking intronic sequences of the NR1C3 gene in 284 IBD patients and 194 controls and predicted NR1C3 haplotypes via bioinformatic analysis. We investigated whether certain NR1C3 variants are associated with susceptibility to IBD or its disease course. None of the detected 22 NR1C3 variants were associated with IBD. Two variants with allelic frequencies over 1% were included in haplotype/diplotype analyses. None of the NR3C1 haplotypes showed association with IBD development or disease course. We conclude that NR1C3 haplotypes are not related to IBD susceptibility or IBD disease activity.
Resumo:
BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.
Resumo:
BACKGROUND: Testicular tumours are relatively uncommon in infants and children, accounting for only 1-2% of all paediatric solid tumours. Of these approximately 1.5% are Leydig-cell tumours. Further, activating mutations of the luteinizing hormone receptor gene (LHR), as well as of the G protein genes, such as Gsalpha (gsp) and Gialpha (gip2) subunits, and cyclin-dependent kinase gene 4(CDK4) have been associated with the development of several endocrine neoplasms. AIMS/METHODS: In this report, the clinical variability of Leydig-cell tumours in four children is described. The LHR-, gsp-, gip2- and CDK4 genes were investigated to establish the possible molecular pathogenesis of the variable phenotype of the Leydig-cell tumours. RESULTS: No activating mutations in these genes were found in the four Leydig-cell tumours studied. Therefore, the absence of activating mutations in LHR, as well as in both the 'hot spot' regions for activating mutations within the G-alpha subunits and in the regulatory 'hot spot' on the CDK4 genes in these tumours indicates molecular heterogeneity among Leydig-cell tumours. CONCLUSION: Four children with a variable phenotype caused by Leydig-cell tumours are described. A molecular analysis of all the 'activating' genes and mutational regions known so far was performed, but no abnormalities were found. The lessons learnt from these clinically variable cases are: perform ultrasound early and most importantly, consider discrepancies between testicular swelling, tumour size and androgen production.
Resumo:
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.
Resumo:
As the development of genotyping and next-generation sequencing technologies, multi-marker testing in genome-wide association study and rare variant association study became active research areas in statistical genetics. This dissertation contains three methodologies for association study by exploring different genetic data features and demonstrates how to use those methods to test genetic association hypothesis. The methods can be categorized into in three scenarios: 1) multi-marker testing for strong Linkage Disequilibrium regions, 2) multi-marker testing for family-based association studies, 3) multi-marker testing for rare variant association study. I also discussed the advantage of using these methods and demonstrated its power by simulation studies and applications to real genetic data.
Resumo:
BACKGROUND: As only a minority of alcoholics develop cirrhosis, polymorphic genes, whose products are involved in fibrosis development were suggested to confer individual susceptibility. We tested whether a functional promoter polymorphism in the gene encoding matrix metalloproteinase-3 (MMP-3; 1171 5A/6A) was associated liver cirrhosis in alcoholics. METHODS: Independent cohorts from the UK and Germany were studied. (i) UK cohort: 320 alcoholic cirrhotics and 183 heavy drinkers without liver damage and (ii) German cohort: 149 alcoholic cirrhotics, 220 alcoholic cirrhotics who underwent liver transplantation and 151 alcoholics without liver disease. Patients were genotyped for MMP-3 variants by restriction fragment length polymorphism, single strand confirmation polymorphism, and direct sequencing. In addition, MMP-3 transcript levels were correlated with MMP-3 genotype in normal liver tissues. RESULTS: Matrix metalloproteinase-3 genotype and allele distribution in all 1023 alcoholic patients were in Hardy-Weinberg equilibrium. No significant differences in MMP-3 genotype and allele frequencies were observed either between alcoholics with or without cirrhosis. There were no differences in hepatic mRNA transcription levels according to MMP-3 genotype. CONCLUSIONS: Matrix metalloproteinase-3 1171 promoter polymorphism plays no role in the genetic predisposition for liver cirrhosis in alcoholics. Stringently designed candidate gene association studies are required to exclude chance observations.