976 resultados para fracture failure
Resumo:
The stress corrosion cracking (SCC) characteristics of agr-titanium sheets in a bromine-methanol solution have been studied in the annealed and cold-rolled conditions using longitudinal and transverse specimens. The times to failure for annealed longitudinal specimens were longer than those for similarly tested transverse specimens. The cold-rolled specimens developed resistance to SCC, but failed by cleavage when notched, unlike the intergranular separation in annealed titanium. The apparent activation energy was found to be texture dependent and was in the range 30 to 51 kJ mol–1 for annealed titanium, and 15kJ mol–1 for cold-rolled titanium. The dependence of SCC behaviour on the texture is related to the changes in the crack initiation times. These are caused by changes in the passivation and repassivation characteristics of the particular thickness plane. The thickness planes are identified with the help of X-ray pole figures obtained on annealed and cold-rolled material. On the basis of the activation energy and the electrochemical measurements, the mechanism of SCC in annealed titanium is identified to be the one involving stress-aided anodic dissolution. On the other hand, the results on the cold-rolled titanium are in support of the hydrogen embrittlement mechanism consisting of hydride precipitation. The cleavage planes identified from the texture data match with the reported habit planes for hydride formation.
Resumo:
Out-of-plane behaviour of mortared and mortarless masonry walls with various forms of reinforcement, including unreinforced masonry as a base case is examined using a layered shell element based explicit finite element modelling method. Wall systems containing internal reinforcement, external surface reinforcement and intermittently laced reinforced concrete members and unreinforced masonry panels are considered. Masonry is modelled as a layer with macroscopic orthotropic properties; external reinforcing render, grout and reinforcing bars are modelled as distinct layers of the shell element. Predictions from the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. The model is used to examine the effectiveness of two retrofitting schemes for an unreinforced masonry wall.
Resumo:
Heart failure (HF) affects approximately 23 million individuals worldwide and this number is increasing, due to an aging and growing population. Early detection of HF is crucial in the management of this debilitating disease. Current diagnostic methods for HF rely heavily on clinical imaging techniques and blood analysis, which makes them less than ideal for population-based screening purposes. Studies focusing on developing novel biomarkers for HF have utilized various techniques and biological fluids, including urine and saliva. Promising results from these studies imply that these body fluids can be used in evaluating the clinical manifestation of HF and will one day be integrated into a clinical workflow and facilitate HF management.
Resumo:
An attempt has been made experimentally to investigate the acoustic emission (AE) energy release in high-strength concrete (HSC) beams subjected to monotonically increasing load. Acoustic emission energy release during the fracture process of the HSC beams is measured. Stress waves released during the fracture process in materials cause acoustic emissions. AE energy released during the fracture of a notched three-point bend plain concrete beam specimens having 28-day compressive strengths of 50.0 MPa, 69.0 MPa and 78.0 MPa and mortar (cement: sand (1: 4) by weight) specimens are studied. Mortar consists of one part cement and four parts sand by weight. The specimens were tested by a material testing system of 1200 kN capacity employing crack mouth opening displacement control at the rate of 0.0004 mm/s. The fracture energy and the AE energy released during the fracture process of all the tested TPB and mortar specimens are compared and discussed. The observations made in the present experimental study have some applications for monitoring the integrity of structures.
Resumo:
Background To reduce nursing shortages, accelerated nursing programs are available for domestic and international students. However, the withdrawal and failure rates from these programs may be different than for the traditional programs. The main aim of our study was to improve the retention and experience of accelerated nursing students. Methods The academic background, age, withdrawal and failure rates of the accelerated and traditional students were determined. Data from 2009 and 2010 were collected prior to intervention. In an attempt to reduce the withdrawal of accelerated students, we set up an intervention, which was available to all students. The assessment of the intervention was a pre-post-test design with non-equivalent groups (the traditional and the accelerated students). The elements of the intervention were a) a formative website activity of some basic concepts in anatomy, physiology and pharmacology, b) a workshop addressing study skills and online resources, and c) resource lectures in anatomy/physiology and microbiology. The formative website and workshop was evaluated using questionnaires. Results The accelerated nursing students were five years older than the traditional students (p < 0.0001). The withdrawal rates from a pharmacology course are higher for accelerated nursing students, than for traditional students who have undertaken first year courses in anatomy and physiology (p = 0.04 in 2010). The withdrawing students were predominantly the domestic students with non-university qualifications or equivalent experience. The failure rates were also higher for this group, compared to the traditional students (p = 0.05 in 2009 and 0.03 in 2010). In contrast, the withdrawal rates for the international and domestic graduate accelerated students were very low. After the intervention, the withdrawal and failure rates in pharmacology for domestic accelerated students with non-university qualifications were not significantly different than those of traditional students. Conclusions The accelerated international and domestic graduate nursing students have low withdrawal rates and high success rates in a pharmacology course. However, domestic students with non-university qualifications have higher withdrawal and failure rates than other nursing students and may be underprepared for university study in pharmacology in nursing programs. The introduction of an intervention was associated with reduced withdrawal and failure rates for these students in the pharmacology course.
Resumo:
The main objective of this study is to evaluate selected geophysical, structural and topographic methods on regional, local, and tunnel and borehole scales, as indicators of the properties of fracture zones or fractures relevant to groundwater flow. Such information serves, for example, groundwater exploration and prediction of the risk of groundwater inflow in underground construction. This study aims to address how the features detected by these methods link to groundwater flow in qualitative and semi-quantitative terms and how well the methods reveal properties of fracturing affecting groundwater flow in the studied sites. The investigated areas are: (1) the Päijänne Tunnel for water-conveyance whose study serves as a verification of structures identified on regional and local scales; (2) the Oitti fuel spill site, to telescope across scales and compare geometries of structural assessment; and (3) Leppävirta, where fracturing and hydrogeological environment have been studied on the scale of a drilled well. The methods applied in this study include: the interpretation of lineaments from topographic data and their comparison with aeromagnetic data; the analysis of geological structures mapped in the Päijänne Tunnel; borehole video surveying; groundwater inflow measurements; groundwater level observations; and information on the tunnel s deterioration as demonstrated by block falls. The study combined geological and geotechnical information on relevant factors governing groundwater inflow into a tunnel and indicators of fracturing, as well as environmental datasets as overlays for spatial analysis using GIS. Geophysical borehole logging and fluid logging were used in Leppävirta to compare the responses of different methods to fracturing and other geological features on the scale of a drilled well. Results from some of the geophysical measurements of boreholes were affected by the large diameter (gamma radiation) or uneven surface (caliper) of these structures. However, different anomalies indicating more fractured upper part of the bedrock traversed by well HN4 in Leppävirta suggest that several methods can be used for detecting fracturing. Fracture trends appear to align similarly on different scales in the zone of the Päijänne Tunnel. For example, similarities of patterns were found between the regional magnetic trends, correlating with orientations of topographic lineaments interpreted as expressions of fracture zones. The same structural orientations as those of the larger structures on local or regional scales were observed in the tunnel, even though a match could not be made in every case. The size and orientation of the observation space (patch of terrain at the surface, tunnel section, or borehole), the characterization method, with its typical sensitivity, and the characteristics of the location, influence the identification of the fracture pattern. Through due consideration of the influence of the sampling geometry and by utilizing complementary fracture characterization methods in tandem, some of the complexities of the relationship between fracturing and groundwater flow can be addressed. The flow connections demonstrated by the response of the groundwater level in monitoring wells to pressure decrease in the tunnel and the transport of MTBE through fractures in bedrock in Oitti, highlight the importance of protecting the tunnel water from a risk of contamination. In general, the largest values of drawdown occurred in monitoring wells closest to the tunnel and/or close to the topographically interpreted fracture zones. It seems that, to some degree, the rate of inflow shows a positive correlation with the level of reinforcement, as both are connected with the fracturing in the bedrock. The following geological features increased the vulnerability of tunnel sections to pollution, especially when several factors affected the same locations: (1) fractured bedrock, particularly with associated groundwater inflow; (2) thin or permeable overburden above fractured rock; (3) a hydraulically conductive layer underneath the surface soil; and (4) a relatively thin bedrock roof above the tunnel. The observed anisotropy of the geological media should ideally be taken into account in the assessment of vulnerability of tunnel sections and eventually for directing protective measures.
Resumo:
Background Studies investigating the relationship between malnutrition and post-discharge mortality following acute hip fracture yield conflicting results. This study aimed to determine whether malnutrition independently predicted 12-month post-fracture mortality after adjusting for clinically relevant covariates. Methods An ethics approved, prospective, consecutive audit was undertaken for all surgically treated hip fracture inpatients admitted to a dedicated orthogeriatric unit (November 2010–October 2011). The 12-month mortality data were obtained by a dual search of the mortality registry and Queensland Health database. Malnutrition was evaluated using the Subjective Global Assessment. Demographic (age, gender, admission residence) and clinical covariates included fracture type, time to surgery, anaesthesia type, type of surgery, post-surgery time to mobilize and post-operative complications (delirium, pulmonary and deep vein thrombosis, cardiac complications, infections). The Charlson Comorbidity Index was retrospectively applied. All diagnoses were confirmed by the treating orthogeriatrician. Results A total of 322 of 346 patients were available for audit. Increased age (P = 0.004), admission from residential care (P < 0.001), Charlson Comorbidity Index (P = 0.007), malnutrition (P < 0.001), time to mobilize >48 h (P < 0.001), delirium (P = 0.003), pulmonary embolism (P = 0.029) and cardiovascular complication (P = 0.04) were associated with 12-month mortality. Logistic regression analysis demonstrated that malnutrition (odds ratio (OR) 2.4 (95% confidence interval (CI) 1.3–4.7, P = 0.007)), in addition to admission from residential care (OR 2.6 (95% CI 1.3–5.3, P = 0.005)) and pulmonary embolism (OR 11.0 (95% CI 1.5–78.7, P = 0.017)), independently predicted 12-month mortality. Conclusions Findings substantiate malnutrition as an independent predictor of 12-month mortality in a representative sample of hip fracture inpatients. Effective strategies to identify and treat malnutrition in hip fracture should be prioritized.
Resumo:
It is recognised that patients with chronic disease are unable to remembercorrectly information provided by health care profesionals. The teach-back method is acknowledgedas a technique to improve patients’ understanding. Yet it is not used in nursing practice in Vietnam. Objectives This study sought to examine knowledge background of heart failure among cardiac nurses, introduce a education about heart failure self-management and the teach-back method to assist teaching patients on self-care. The study also wanted to explore if a short education could benefit nurses’ knowledge so they would be qualified to deliver education to patients. Methods A pre/post-test design was employed. Cardiac nurses from 3 hospitals (Vietnam National Heart Institute, E Hospital, Huu Nghi Hospital) were invited to attend a six-hour educational session which covered both the teach-back method and heart failure self-management. Role-play with scenarios were used to reinforce educational contents. The Dutch Heart Failure Knowledge Scale was used to assess nurses’ knowledge of heart failure at baseline and after the educational session. Results 20 nurses from3 selected hospitals participated. Average age was 34.5±7.9 years and years of nursing experience was 11.6±8.3. Heart failure knowledge score at the baseline was 12.7±1.2 and post education was 13.8±1.0. There was deficiency of nurses knowledge regarding fluid restriction among heart failure people, causes of worsening heart failure. Heart failure knowledge improved significantly following the workshop (p < 0.001). All nurses achieved an overall adequate knowledge score (≥11 of the maximum 15) at the end. 100% of nurses agreed that the teach-back method was effective and could be used to educate patients about heart failure self-management. Conclusions The results of this study have shown the effectiveness of the piloteducaiton in increasing nurses’ knowledge of heart failure. The teach-back method is accepted for Vietnamese nurses to use in routine cardiac practice.
Resumo:
Mathematical models, for the stress analysis of symmetric multidirectional double cantilever beam (DCB) specimen using classical beam theory, first and higher-order shear deformation beam theories, have been developed to determine the Mode I strain energy release rate (SERR) for symmetric multidirectional composites. The SERR has been calculated using the compliance approach. In the present study, both variationally and nonvariationally derived matching conditions have been applied at the crack tip of DCB specimen. For the unidirectional and cross-ply composite DCB specimens, beam models under both plane stress and plane strain conditions in the width direction are applicable with good performance where as for the multidirectional composite DCB specimen, only the beam model under plane strain condition in the width direction appears to be applicable with moderate performance. Among the shear deformation beam theories considered, the performance of higher-order shear deformation beam theory, having quadratic variation for transverse displacement over the thickness, is superior in determining the SERR for multidirectional DCB specimen.
Resumo:
The stochastic version of Pontryagin's maximum principle is applied to determine an optimal maintenance policy of equipment subject to random deterioration. The deterioration of the equipment with age is modelled as a random process. Next the model is generalized to include random catastrophic failure of the equipment. The optimal maintenance policy is derived for two special probability distributions of time to failure of the equipment, namely, exponential and Weibull distributions Both the salvage value and deterioration rate of the equipment are treated as state variables and the maintenance as a control variable. The result is illustrated by an example
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Titanium dioxide (TiO2) nanotubes are appealing to research communities due to their excellent functional properties. However, there is still a lack of understanding of their mechanical properties. In this work, we conduct molecular dynamics (MD) simulations to investigate the mechanical behaviour of rutile and amorphous TiO2 nanotubes. The results indicate that the rutile TiO2 nanotube has a much higher Young's modulus (∼800 GPa) than the amorphous one (∼400 GPa). Under tensile loading, rutile nanotubes fail in the form of brittle fracture but significant ductility (up to 30%) has been observed in amorphous nanotubes. This is attributed to a unique ‘repairing’ mechanism via bond reconstruction at under-coordinated sites as well as bond conversion at over-coordinated sites. In addition, it is observed that the fracture strength of rutile nanotubes is strongly dependent on their free surfaces. These findings are considered to be useful for development of TiO2 nanostructures with improved mechanical properties.