975 resultados para fixed-time AI
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a reliability-based analysis for calculating critical tool life in machining processes. It is possible to determine the running time for each tool involved in the process by obtaining the operations sequence for the machining procedure. Usually, the reliability of an operation depends on three independent factors: operator, machine-tool and cutting tool. The reliability of a part manufacturing process is mainly determined by the cutting time for each job and by the sequence of operations, defined by the series configuration. An algorithm is presented to define when the cutting tool must be changed. The proposed algorithm is used to evaluate the reliability of a manufacturing process composed of turning and drilling operations. The reliability of the turning operation is modeled based on data presented in the literature, and from experimental results, a statistical distribution of drilling tool wear was defined, and the reliability of the drilling process was modeled. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular two dimensional polygons inside a two dimensional container. This problem is approached with an heuristic based on simulated annealing. Traditional 14 external penalization"" techniques are avoided through the application of the no-fit polygon, that determinates the collision free area for each polygon before its placement. The simulated annealing controls: the rotation applied, the placement and the sequence of placement of the polygons. For each non placed polygon, a limited depth binary search is performed to find a scale factor that when applied to the polygon, would allow it to be fitted in the container. It is proposed a crystallization heuristic, in order to increase the number of accepted solutions. The bottom left and larger first deterministic heuristics were also studied. The proposed process is suited for non convex polygons and containers, the containers can have holes inside. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.
Resumo:
A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
The effect of precipitation on the corrosion resistance of AISI 316L(N) stainless steel previously exposed to creep tests at 600 degrees C for periods of up to 10 years, has been studied. The corrosion resistance was investigated in 2 M H(2)SO(4)+0.5 M NaCl+0.01 M KSCN solution at 30 degrees C by electrochemical methods. The results showed that the susceptibility to intergranular corrosion was highly affected by aging at 600 degrees C and creep testing time. The intergranular corrosion resistance decreased by more than twenty times when the creep testing time increased from 7500 h to 85,000 h. The tendency to passivation decreased and less protective films were formed on the creep tested samples. All tested samples also showed susceptibility to pitting. Grain boundary M(23)C(6) carbides were not found after long-term exposure at 600 degrees C and the corrosion behavior of the creep tested samples was attributed to intermetallic phases (mainly sigma phase) precipitation. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K (r)) and wall heat transfer coefficient (h (w)) were estimated from steady-state data and the characteristic packed bed time constant (tau) from transient data. A new correlation for the K (r) in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.
Resumo:
Steady-state and time-resolved fluorescence measurements are reported for several crude oils and their saturates, aromatics, resins, and asphaltenes (SARA) fractions (saturates, aromatics and resins), isolated from maltene after pentane precipitation of the asphaltenes. There is a clear relationship between the American Petroleum Institute (API) grade of the crude oils and their fluorescence emission intensity and maxima. Dilution of the crude oil samples with cyclohexane results in a significant increase of emission intensity and a blue shift, which is a clear indication of the presence of energy-transfer processes between the emissive chromophores present in the crude oil. Both the fluorescence spectra and the mean fluorescence lifetimes of the three SARA fractions and their mixtures indicate that the aromatics and resins are the major contributors to the emission of crude oils. Total synchronous fluorescence scan (TSFS) spectral maps are preferable to steady-state fluorescence spectra for discriminating between the fractions, making TSFS maps a particularly interesting choice for the development of fluorescence-based methods for the characterization and classification of crude oils. More detailed studies, using a much wider range of excitation and emission wavelengths, are necessary to determine the utility of time-resolved fluorescence (TRF) data for this purpose. Preliminary models constructed using TSFS spectra from 21 crude oil samples show a very good correlation (R(2) > 0.88) between the calculated and measured values of API and the SARA fraction concentrations. The use of models based on a fast fluorescence measurement may thus be an alternative to tedious and time-consuming chemical analysis in refineries.
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.