996 resultados para epsilon-Neodymium
Resumo:
In this study, a nanofiber mesh made by co-electrospinning medical grade poly(epsilon-caprolactone) and collagen (mPCL/Col) was fabricated and studied. Its mechanical properties and characteristics were analyzed and compared to mPCL meshes. mPCL/Col meshes showed a reduction in strength but an increase in ductility when compared to PCL meshes. In vitro assays revealed that mPCL/Col supported the attachment and proliferation of smooth muscle cells on both sides of the mesh. In vivo studies in the corpus cavernosa of rabbits revealed that the mPCL/Col scaffold used in conjunction with autologous smooth muscle cells resulted in better integration with host tissue when compared to cell free scaffolds. On a cellular level preseeded scaffolds showed a minimized foreign body reaction.
Resumo:
Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.
Resumo:
Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.
Resumo:
The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.
Resumo:
In a very recent study [1] the Renormalisation Group (RNG) turbulence model was used to obtain flow predictions in a strongly swirling quarl burner, and was found to perform well in predicting certain features that are not well captured using less sophisticated models of turbulence. The implication is that the RNG approach should provide an economical and reliable tool for the prediction of swirling flows in combustor and furnace geometries commonly encountered in technological applications. To test this hypothesis the present work considers flow in a model furnace for which experimental data is available [2]. The essential features of the flow which differentiate it from the previous study [1] are that the annular air jet entry is relatively narrow and the base wall of the cylindrical furnace is at 90 degrees to the inlet pipe. For swirl numbers of order 1 the resulting flow is highly complex with significant inner and outer recirculation regions. The RNG and standard k-epsilon models are used to model the flow for both swirling and non-swirling entry jets and the results compared with experimental data [2]. Near wall viscous effects are accounted for in both models via the standard wall function formulation [3]. For the RNG model, additional computations with grid placement extending well inside the near wall viscous-affected sublayer are performed in order to assess the low Reynolds number capabilities of the model.
Resumo:
In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.
Resumo:
The virus inducible non-coding RNA (VINC) was detected initially in the brain of mice infected with Japanese encephalitis virus (JEV) and rabies virus. VINC is also known as NEAT1 or Men epsilon RNA. It is localized in the nuclear paraspeckles of several murine as well as human cell lines and is essential for paraspeckle formation. We demonstrate that VINC interacts with the paraspeckle protein, P54nrb through three different protein interaction regions (PIRs) one of which (PIR-1) is localized near the 50 end while the other two (PIR-2, PIR-3) are localized near the 30 region of VINC. Our studies suggest that VINC may interact with P54nrb through a novel mechanism which is different from that reported for protein coding RNAs. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Two seven-residue helical segments, Val-Ala-Leu-Aib-Val-Ala-Leu, were linked synthetically with an epsilon-aminocaproic acid (Acp) linker with the intention of making a stable antiparallel helix-helix motif. The crystal structure of the linked peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Acp-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (1) shows the two helices displaced laterally from each other by the linker, but the linker has not folded the molecule into a close-packed antiparallel conformation. Two strong intermolecular NH...O = C hydrogen bonds are formed between the top of the lower helix of one molecule and the bottom of the upper helix in a laterally adjacent molecule to give the appearance of an extended single helix. The composite peptide with Boc and OMe end groups, C76H137N15O18.H2O, crystallize in space group P2(1) with a = 8.802 (1) angstrom, b = 20.409 (4) angstrom, c = 26.315 (3) angstrom, and beta = 90.72 (1)degrees; overall agreement R = 7.86% for 5030 observed reflections (\F(o)\ > 3-sigma(F)); resolution = 0.93 angstrom. Limited evidence for a more compact conformation in solution consistent with an antiparallel helix arrangement is obtained by comparison of the HPLC retention times and CD spectra of peptide 1 with well-characterized continuous helices of similar length and sequence.
Resumo:
The monochloroacetates of lanthanum, praseodymium and neodymium of the composition M(ClCH2COO)3·2H2O have been prepared and characterised. The compounds behave as non-electrolytes in dimethylformamide. The infrared spectra are consistent with bidentate coordination of the carboxylate group and show the presence of two types of water molecules, coordinated, and free. With six oxygen atoms from the three acetato groups and one from the water bonded to the metal, a coordination number of seven has been assigned to the rare earths in these compounds. On pyrolysis, the chloroacetates lose water at ~130 °C and yield the oxychlorides at ~500 °C. The X-ray powder patterns of the chloroacetates have been indexed for the monoclinic system, with four molecules per unit cell.
Resumo:
The preparation of three different types of carbonates of praseodymium, neodymium and terbium has been described. The carbonates have been characterized by potentiometry, chemical analysis, X-ray crystallography, infra-red spectroscopy and by their thermal behaviour. The thermal decomposition of several carbonates has been studied exhaustively under a variety of conditions and the stoicheiometry, thermodynamics and energetics of the reactions at various stages of decomposition have been examined. The stoicheiometry of the oxides obtained as final products of decomposition has been examined.
Resumo:
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.