966 resultados para energy poverty dynamics
Resumo:
This thesis is based on two studies that are related to floating wave energy conversion (WEC) devices and turbulent fountains. The ability of the open-source CFD software OpenFOAM® has been studied to simulate these phenomena. The CFD model has been compared with the physical experimental results. The first study presents a model of a WEC device, called MoonWEC, which is patented by the University of Bologna. The CFD model of the MoonWEC under the action of waves has been simulated using OpenFOAM and the results are promising. The reliability of the CFD model is confirmed by the laboratory experiments, conducted at the University of Bologna, for which a small-scale prototype of the MoonWEC was made from wood and brass. The second part of the thesis is related to the turbulent fountains which are formed when a heavier source fluid is injected upward into a lighter ambient fluid, or else a lighter source fluid is injected downward into a heavier ambient fluid. For this study, the first case is considered for laboratory experiments and the corresponding CFD model. The vertical releases of the source fluids into a quiescent, uniform ambient fluid, from a circular source, were studied with different densities in the laboratory experiments, conducted at the University of Parma. The CFD model has been set up for these experiments. Favourable results have been observed from the OpenFOAM simulations for the turbulent fountains as well, indicating that it can be a reliable tool for the simulation of such phenomena.
Resumo:
The present work proposes different approaches to extend the mathematical methods of supervisory energy management used in terrestrial environments to the maritime sector, that diverges in constraints, variables and disturbances. The aim is to find the optimal real-time solution that includes the minimization of a defined track time, while maintaining the classical energetic approach. Starting from analyzing and modelling the powertrain and boat dynamics, the energy economy problem formulation is done, following the mathematical principles behind the optimal control theory. Then, an adaptation aimed in finding a winning strategy for the Monaco Energy Boat Challenge endurance trial is performed via ECMS and A-ECMS control strategies, which lead to a more accurate knowledge of energy sources and boat’s behaviour. The simulations show that the algorithm accomplishes fuel economy and time optimization targets, but the latter adds huge tuning and calculation complexity. In order to assess a practical implementation on real hardware, the knowledge of the previous approaches has been translated into a rule-based algorithm, that let it be run on an embedded CPU. Finally, the algorithm has been tuned and tested in a real-world race scenario, showing promising results.
Resumo:
The interaction of organic chromophores with light initiates ultrafast processes in the timescale of femtoseconds. An atomistic understanding of the mechanism driving such photoinduced reactions opens up the door to exploit them for our benefit. This thesis studies the interactions of ultraviolet light with the DNA/RNA molecules and the amino-acid tryptophan. Using some of the most accurate electronic structure methods and sophisticated environmental modelling, the works documented herein enable quantitative comparisons with cutting-edge experimental data. The relaxation pathways undertaken by the excited molecule are revealed through static and dynamical investigations of the excited-state potential energy surface. The profound role played by the dynamic response of the environment to guide the excitation in these timescales is addressed thoroughly.
Resumo:
The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.
Resumo:
This work is part of a project promoted by Emilia-Romagna that aims at encouraging research activities in order to support the innovation strategies of the regional economic system through the exploitation of new data sources. To gain this scope, a database containing administrative data is provided by the Municipality of Bologna. This is achieved by linking data from the Register Office of the Municipality and fiscal data coming from the tax returns submitted to the Revenue Agency and released by the Ministry of Economy and Finance for the period 2002-2017. The main purpose of the project is the analysis of the medium term financial and distributional trends of income of the citizens residing in the Municipality of Bologna. Exploiting this innovative source of data allow us to analyse the dynamics of income at municipal level, overcoming the lack of information in official survey-based statistic. We investigate these trends by building inequality indicators and by examining the persistence of in-work poverty. Our results represent an important informative element to improve the effectiveness and equity of welfare policies at the local level, and to guide the distribution of economic and social support and urban redevelopment interventions in different areas of the Municipality.
Oceanic Near-inertial internal waves generation, propagation and interaction with mesoscale dynamics
Resumo:
Oceans play a key role in the climate system, being the largest heat sinks on Earth. Part of the energy balance of ocean circulation is driven by the Near-inertial internal waves (NIWs). Strong NIWs are observed during a multi-platform, multi-disciplinary and multi-scale campaign led by the NATO-STO CMRE in autumn 2017 in the Ligurian Sea (northwestern Mediterranean Sea). The objectives of this work are as follows: characterise the studied area at different scales; study the NIWs generation and their propagation; estimate the NIWs properties; study the interaction between NIWs and mesoscale structures. This work provides, to the author’s knowledge, the first characterization of NIWs in the Mediterranean Sea. The near-surface NIWs observed at the fixed moorings are locally generated by wind bursts while the deeper waves originate in other regions and arrive at the moorings several days later. Most of the observed NIWs energy propagates downward with a mean vertical group velocity of (2.2±0.3) ⋅10-4 m s-1. On average, the NIWs have an amplitude of 0.13 m s-1 and mean horizontal and vertical wavelengths of 43±25 km and 125±35 m, while shorter wavelengths are observed at the near-coastal mooring, 36±2 km and 33±2 m, respectively. Most of the observed NIWs are blue shifted and reach a value 9% higher than the local inertial frequency. Only two observed NIWs are characterised by a redshift (up to 3% lower than the local inertial frequency). In support of the in situ observations, a high resolution numerical model is implemented using NEMO (Madec et al., 2019). Results show that anticyclones (cyclones) shift the frequency of NIWs to lower (higher) frequencies with respect to the local inertial frequency. Anticyclones facilitate the downward propagation of NIW energy, while cyclones dampen it. Absence of NIWs energy within an anticyclone is also investigated.
Resumo:
Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
Resumo:
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.
Resumo:
Cardiac arrest after open surgery has an incidence of approximately 3%, of which more than 50% of the cases are due to ventricular fibrillation. Electrical defibrillation is the most effective therapy for terminating cardiac arrhythmias associated with unstable hemodynamics. The excitation threshold of myocardial microstructures is lower when external electrical fields are applied in the longitudinal direction with respect to the major axis of cells. However, in the heart, cell bundles are disposed in several directions. Improved myocardial excitation and defibrillation have been achieved by applying shocks in multiple directions via intracardiac leads, but the results are controversial when the electrodes are not located within the cardiac chambers. This study was designed to test whether rapidly switching shock delivery in 3 directions could increase the efficiency of direct defibrillation. A multidirectional defibrillator and paddles bearing 3 electrodes each were developed and used in vivo for the reversal of electrically induced ventricular fibrillation in an anesthetized open-chest swine model. Direct defibrillation was performed by unidirectional and multidirectional shocks applied in an alternating fashion. Survival analysis was used to estimate the relationship between the probability of defibrillation and the shock energy. Compared with shock delivery in a single direction in the same animal population, the shock energy required for multidirectional defibrillation was 20% to 30% lower (P < .05) within a wide range of success probabilities. Rapidly switching multidirectional shock delivery required lower shock energy for ventricular fibrillation termination and may be a safer alternative for restoring cardiac sinus rhythm.
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.