1000 resultados para energia cinética
Resumo:
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) or octogen is a white crystalline substance which occurs in four polymorphous forms. It is used in a wide variety of military and industrial formulations owing to its suitable properties. Researchers have demonstrated the usefulness of this energetic material in explosive components. In the present work we apply differential scanning calorimetry (DSC) to measure the a ® d solid-solid phase transition energy of HMX. The results obtained by Kissinger's and Ozawa's methods were 487 and 495 kJ/mol, respectively.
Resumo:
Biodiesel was produced by the transesterification of neutral soybean oil and anhydrous ethanol using NaOH as catalyst. Combinations of biodiesel and diesel in the proportions of 0, 5, 10, 20, 40, 60, 80 and 100% were tested, respectively, as fuel in an energy generator. The average consumption and mixture performance were analysed. The tests showed a reduction in Diesel oil consumption when mixed with up to 20% of biodiesel. The quality characteristics of these fuels were analyzed.
Determinação de arsênio em águas contaminadas usando fluorescência de raios-X por energia dispersiva
Resumo:
This work proposes a simple, fast and inexpensive method to determine As in natural waters, using X-ray fluorescence. 50 µL of each sample containing 100 mg L-1 of yttrium as internal standard were deposited over a 2.5 µm thickness MylarTM film. The samples were dried at 50 °C for 2 h. X-ray spectra were obtained using an EDXRF apparatus. The accuracy was determined by analyte addition/recovery and by comparison with Hydride Generation Atomic Absorption Spectrometry (HG AAS). A recovery of about 100% was obtained and the results were in good agreement with HG AAS. The method showed a relative standard deviation of 6.8% and a detection limit of 10.5 µg L-1 of As.
Resumo:
The production of cashew apple wine has the purpose of minimizing the wastage in the Brazilian cashew production. Knowing that the cashew apple fermentation produces a good cashew wine, a study of alcoholic fermentation kinetics of the cashew apple and the physico-chemical characterization of the product were made. The cashew wine was produced in an stirred batch reactor. The results of the physico-chemical analysis of volatiles, residual sugars, total acidity and pH of cashew wine showed that their concentrations were within the standard limits established by the Brazilian legislation for fruit wines.
Resumo:
The influence of natural aging furthered by atmospheric corrosion of parts of electric transformers and materials, as well as of concrete poles and cross arms containing corrosion inhibitors was evaluated in Manaus. Results for painted materials, it could showed that loss of specular gloss was more intensive in aliphatic polyurethane points than in acrylic polyurethane ones. No corrosion was observed for metal and concrete samples until 400 days of natural aging. Corrosion in steel reinforcement was noticed in some poles, arising from manufacturing faults, such as low cement content, water/cement ratio, thin concrete cover thickness, etc. The performance of corrosion inhibitors was assessed by many techniques after natural and accelerated aging in a 3.5% saline aqueous solution. The results show the need for better chemical component selection and its concentration in the concrete mixture.
Resumo:
Activation energy (Ea) is a parameter that can be applied to make predictions about the quality of oils to be used in an ICO engine. In this study, Ea was determined by thermogravimetry following two different procedures: ASTM E 1641 and Model-free kinetics. The energies were calculated in the low temperature oxidation (LTO) region for three Brazilian fuel oils (denominated A, B and C) and the results were equal using both methods: 43 kJ mol-1 (alpha=0.1 to 0.9) for oil A, 48 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil B, and 58 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil C. It was concluded that, among the oils studied, sample A was potentially the best option concerning the behavior in the LTO region.
Resumo:
Avui fa una setmana es va cloure la cimera del clima, sense progressos significatius. Quan es discuteix sobre canvi climàtic es posa molt èmfasi en les emissions de gasos d'efecte hivernacle, i es parla de desenvolupament, industrialització i sostenibilitat, però no es té en compte la causa primera de tot això, la nostra idiosincràsia biològica [...].
Resumo:
Energy dispersive X-ray fluorescence methodology (EDXRF) was used to determine Al, Ba, Ca, Cr, Fe, K, Mn, Pb, Rb, S, Si, Sr, Ti, V, Zn in pottery sherds from seven archaeological sites in the central region of Rio Grande do Sul State, Brazil. The potteries' chemical fingerprints from Ijuí River, Ibicuí Mirim River, Vacacaí Mirim River and Jacuí River were identified. Interactions between sites from the Jacuí River, Vacacaí Mirim River and Ibicui Mirim River could have occurred because some samples from these sites are overlapping in a principal component analysis (PCA) graphic. The pottery provenance could be the same.
Resumo:
The biosorption, based on the use of biomass for removal of ions is distinguished as an innovative and promising technology when compared with the traditional methods. In this context, the aim of the present work is to use Saccharomyces cerevisiae as biosorbent for the retention of Pb2+ metal ions. Factorial design was used for evaluation of the process. The observed equilibrium data were well described by Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity was 1486.88 mg/g. The results indicated that Saccharomyces cerevisiae is suitable for biosorption of Pb2+ metal ions.
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
Electron stimulated ion desorption (ESID) and degradation studies of polypyrrole doped with dodecylsulfate (PPy/DS) deposited on FTO were performed using time-of-flight mass spectrometry (TOF-MS) for ion analysis. The results suggest a strong contribution from fragments of the dodecylsulfate hydrocarbon chain to the mass spectra. In the 650-1500 eV energy range the ion yield curves show maxima at about 600, 1200 and 1400 eV, which can be related to carbon, nitrogen and oxygen-containing fragments, respectively, and interpreted in terms of the Auger Stimulated Ion Desorption (ASID) mechanism. Degradation studies indicate rapid loss of heavier hydrocarbons and an increase of bulk and substrate fragments. Some degradation profiles suggest formation of new species.
Resumo:
Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.
Resumo:
Photosynthetic microorganism cultures, such as microalgae, represent one of the alternatives for fossil CO2 emissions mitigation. Carbon supply is the major cost component in microalgal cultures. Aiming to enhance the dissolved inorganic carbon uptake efficiency in microalgal cultures, Spirulina sp LEB-18 was cultivated in mediums containing NaHCO3 concentrations ranging from 2.8 to 100 g L-1. Results indicated that lower dissolved inorganic carbon concentratios (2.8 g L-1 NaHCO3) produce higher growth parameters (Xmax = 0.75 g L-1; Pmax = 0.145 g L-1 d-1; µmax = 0.254 d-1) and lower carbon losses (13.61%). At 50 g L-1 of NaHCO3 cell growth was inhibited and carbon losses reached 38.73%.
Resumo:
Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.