944 resultados para end-to-end testing, javascript, application web, single-page application
Resumo:
Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.
Resumo:
At Site 493, DSDP Leg 66, dioritic basement was reached below lower Miocene (NN1 Zone, 22-24 Ma) terrigenous sediments. Petrographical, mineralogical (including microprobe analyses), and chemical features of the dioritic rocks reveal their magmatic affinity with the calc-alkaline series. Furthermore, their radiometric age (35.3 m.y.) links the basement to the Sierra Madre Occidental in Mexico and to mid-Tertiary volcanic arcs in Central America. The presence of Oligocene diorite 50 km from the trench axis confirms the truncation of the south Mexico margin, which we explain as the result of a 650 to 800 km left-lateral displacement of Central America relative to North America. Truncation must have occurred in the late Miocene, after the diorite intrusion and prior to the present subduction.
Resumo:
Five hundred meters of a unique Upper Cretaceous Cr-rich glauconitic sequence (Unit III) that overlies a 3-m-thick alkali-basalt flow with underlying epiclastic volcanogenic sediments was drilled at ODP Leg 120 Site 748. The Cr-rich glauconitic sequence is lithostratigraphically and biostratigraphically divided into three subunits (IIIA, IIIB, IIIC) that can also be recognized by the Cr concentration of the bulk sediment, which is low (<200 ppm) in Subunits IIIC and IIIA and high (400-800 ppm) in Subunit IIIB. The Cr enrichment is caused by Cr-spinel, which is the only significant heavy mineral component beside Fe-Ti ores. Other Cr-bearing components are glauconite pellets and possibly some other clay minerals. The glauconitic sequence of Subunit IIIB was formed by reworking of glauconite and volcanogenic components that were transported restricted distances and redeposited downslope by mass-transportation processes. The site of formation was a nearshore, shallow inner shelf environment, and final deposition may have been on the outer part of a narrow shelf, at the slope toward the restricted, probably synsedimentary, faulted Raggatt Basin. The volcanic edifices uncovered on land were tholeiitic basalts (T-MORB), alkali-basaltic (OIB) and (?)silicic volcanic complexes, and ultramafic rocks. The latter were the ultimate source for the Cr-spinel contribution. Terrestrial aqueous solutions carried Fe, K, Cr, Si, and probably Al into the marine environment, where, depending on the redox conditions of microenvironments in the sediment, green (Fe- and K-rich) or brown (Al-rich) glauconite pellets formed. The Upper Cretaceous glauconitic sequence at Site 748 on the Southern Kerguelen Plateau constitutes the transition in space and time from terrestrial to marine, from magmatically active subaerial to magmatically passive submarine conditions, and from a tranquil platform to active rifting conditions.
Resumo:
Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.
Resumo:
We report on wintertime data collected from Baffin Bay and northern Davis Strait, a major gateway linking the Arctic with the subpolar North Atlantic, using narwhals (Monodon monoceros) as an oceanographic sampling platform. Fourteen narwhals were instrumented with satellite-linked time-depth-temperature recorders between 2005 and 2007. Transmitters collected and transmitted water column temperature profiles from each dive between December and April, where >90% of maximum daily dive depths reached the bottom. Temperature measurements were combined with 15 helicopter-based conductivity-temperature-depth (CTD) casts taken in April 2007 across central Baffin Bay and compared with hydrographic climatology values used for the region in Arctic climate models. Winter temperature maxima for whale and CTD data were in good agreement, ranging between 4.0°C and 4.6°C in inshore and offshore Baffin Bay and in Davis Strait. The warm Irminger Water was identified between 57°W and 59°W (at 68°N) between 200 and 400 m depths. Whale data correlated well with climatological temperature maxima; however, they were on average 0.9°C warmer ±0.6°C (P < 0.001). Furthermore, climatology data overestimated the winter surface isothermal layer thickness by 50-80 m. Our results suggest the previously documented warming in Baffin Bay has continued through 2007 and is associated with a warmer West Greenland Current in both of its constituent water masses. This research demonstrates the feasibility of using narwhals as ocean observation platforms in inaccessible Arctic areas where dense sea ice prevents regular oceanographic measurements and where innate site fidelity, affinity for winter pack ice, and multiple daily dives to >1700 m offer a useful opportunity to sample the area.
Resumo:
In order to determine geochemical compositions of Late Cenozoic Arctic seawater, oxide fractions were chemically separated from 15 samples of hand-picked ferromanganese micronodules (50-300 mu m). The success of the chemical separation is indicated by the fact that >97% of the Sr in the oxide fraction is seawater-derived. Rare-earth element (REE) abundances of the Arctic micronodule oxide fractions are much lower than those of bulk Fe-Mn nodules from other ocean basins of the world (e.g., 33 vs. 145 ppm Nd), but the Arctic oxides are enriched in Ce relative to Nd (Ce-N/Nd-N=2.2+/-0.5) and have convex-upward, shale-normalized REE patterns (Nd-N/Gd-N=0.61+/-0.06, Gd-N/Yb-N = 1.5+/-0.2, Nd-N/Yb-N = 0.9+/-0.2), typical of other hydrogenous and diagenetic marine Fe-Mn-oxides. Bulk sediment samples from the central Arctic Ocean have REE abundances and patterns that are characteristic of those of post-Archean shale. Non-detrital fractions (calcite + oxide coatings) of Recent Arctic foraminifera have REE abundances and patterns similar to those of Recent foraminifera from the Atlantic Ocean. Electron microprobe analyses (n=178) of transition elements in 29 Arctic Fe-Mn micronodules from five different stratigraphic intervals of Late Cenozoic sediment indicate that oxide accretion occurred as a result of hydrogenetic and diagenetic processes close to the sediment-seawater interface. Transition element ratios suggest that no oxide accretion occurred during transitions from oxic to suboxic diagenetic conditions. Only K is correlated with Si and Al, and ratios of these elements suggest that they are associated with illite or phillipsite. Ca and Mg are correlated with Mn, which indicates variable substitution of these elements from seawater into the manganate phase. The geochemical characteristics of Arctic Fe-Mn micronodules indicate that the REEs of the oxide fractions were ultimately derived from seawater. However, because of minute contributions of Sr from siliciclastic detritus during diagenesis or during the chemical leaching procedure, Sr isotope compositions of the oxide fractions cannot be used to trace temporal changes in the Sr-87/Sr-86 ratio of Arctic seawater or to improve the chronostratigraphy.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.
Resumo:
Diatoms were studied quantitatively in six latest Quaternary (~70 kyr B.P. to Recent) piston cores from the westernmost Mediterranean, the Alboran Basin, and the Atlantic region immediately to the west of the Straits of Gibraltar. The Atlantic cores completely lack diatoms. In the Alboran Basin, diatoms are common from late Stage 3 (~27.5 kyr B.P.) to Termination lb (9 kyr B.P.) and in Recent core tops, but are absent in the other latest Quaternary intervals. Maximum accumulation of diatoms and highest abundance of species normally in sediments associated with increased productivity occurred during the latest Quaternary deglaciation, in the first phase of Termination I (~14.8 kyr B.P.). In the modern Alboran Basin, a region of high biological productivity occurs immediately east of the Gibraltar Straits. This high productivity results from upwelling associated with the interaction between the Atlantic inflow and the bottom topography near the Spanish coast. The upwelled nutrient-rich waters are then advected to the east and southeast by the surficial anticyclonic gyral circulation. Late Quaternary variations in diatom abundance are considered to reflect changes in this upwelling intensity with highest diatom abundances inferred to result from increased upwelling associated with an intensification of the anticyclonic gyral circulation. Highest inferred upwelling rates occurred during the first phase of latest Quaternary deglaciation. It is possible that an intensification of circulation within the Mediterranean Basin as a whole occurred from late Stage 3 to mid Termination I because widespread hiatus formation has been reported at this time in the Straits of Sicily due to an increase in the formation of intermediate waters. Diatoms were not preserved in other latest Quaternary intervals due to insufficient productivity to counterbalance their dissolution.
Resumo:
During the early Pliocene warm period (~4.6-4.2 Ma) in the Eastern Equatorial Pacific upwelling region, sea surface temperatures were warm in comparison to modern conditions. Warm upwelling regions have global effects on the heat budget and atmospheric circulation, and are argued to have contributed to Pliocene warmth. Though warm upwelling regions could be explained by weak winds and/or a deep thermocline, the temporal and spatial evolution of the equatorial thermocline is poorly understood. Here we reconstruct temporal and spatial changes in subsurface temperature to monitor thermocline depth and show the thermocline was deeper during the early Pliocene warm period than it is today. We measured subsurface temperature records from Eastern Equatorial Pacific ODP transect Sites 848, 849, and 853 using Mg/Ca records from Globorotalia tumida, which has a depth habitat of ~50-100 m. In the early Pliocene, subsurface temperatures were ~4-5°C warmer than modern temperatures, indicating the thermocline was relatively deep. Subsurface temperatures steeply cooled ~2-3°C from 4.8 to 4.0 Ma and continued to cool an additional 2-3°C from 4.0 Ma to present. Compared to records from other regions, the data suggests the pronounced subsurface cooling between 4.8 and 4.0 Ma was a regional signal related to restriction of the Isthmus of Panama, while continued cooling from 4.0 Ma to present was likely related to global processes that changed global thermocline structure. Additionally, the spatial evolution of the equatorial thermocline along a N-S transect across ODP Sites 853, 849 and 848 suggests an intensification of the southeast trades from the Pliocene to present. Large-scale atmospheric and oceanographic circulation processes link high and low latitude climate through their influence on equatorial thermocline source water regions and consequently the equatorial thermocline. Through these low latitude/high latitude linkages, changes in the equatorial thermocline and thermocline source water played an important role in the transition from the warm Pliocene to the cold Pleistocene.
Resumo:
Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.
Resumo:
In this paper we describe textural relationships in hydrated upper mantle peridotites emplaced at a nonconstructive ridge segment. Development of serpentinites and partially serpentinized peridotites takes place in four main stages: (1) pervasive serpentinization forming mainly lizardite, (2) a tensional stage forming chrysotile + talc + chlorite, (3) a deformational stage forming antigorite + tremolite, and (4) a late local tensional stage forming another generation of chrysotile veinlets. Mineral chemistry of serpentine pseudomorphs reflects in part primary mineral compositions. Olivine pseudomorphs are typically nickeliferous and depleted in aluminum and chromium. Orthopyroxene pseudomorphs have lower nickel contents and relatively high iron, aluminum, and chromium contents. Clinopyroxene pseudomorphs have very low nickel contents and relatively high aluminum and chromium contents. These chemical patterns in the serpentinites can be used to help discriminate between harzburgitic and lherzolitic protoliths. Oxygen isotopes and mineral parageneses suggest serpentine is derived from circulation of hydrothermal (200?C) fluids through the peridotite body. Crystallization of tremolite, talc, and chlorite may have occurred at temperatures up to 525?C if C02/H20 ratios were less than 0.25. Open fissures developing in aging upper mantle provide paths for important seawater circulation through a thin basaltic carapace down to shallow mantle rocks.
Resumo:
Sites 677 and 678 were drilled on ODP Leg 111 to test hypotheses about the nature and pattern of hydrothermal circulation on a mid-ocean ridge flank. Together with earlier results from DSDP Site 501/504 and several heatflow and piston coring surveys covering a 100-km**2 area surrounding the three drill sites, they confirm that hydrothermal circulation persists in this 5.9-m.y.-old crust, both in basement and through the overlying sediments (Langseth et al., 1988, doi:10.2973/odp.proc.ir.111.102.1988). Profiles of sediment pore-water composition with depth at the three drill sites show both vertical and horizontal gradients. The shapes of the profiles and their variation from one site to another result from a combination of vertical and horizontal diffusion, convection, and reaction in the sediments and basement. Chemical species that are highly reactive in the siliceous-calcareous biogenic sediments include bicarbonate (alkalinity), ammonium, sulfate, manganese, calcium, strontium, lithium, silica, and possibly potassium. Reactions include bacterial sulfate reduction, mobilization of Mn2+, precipitation of CaCO3, and recrystallization of calcareous and siliceous oozes to chalk, limestone, and chert. Species with profiles more affected by reaction in basaltic basement than in the sediments include Mg, Ca, Na, K, and oxygen isotopes. Reaction in basement at 60?C and at higher temperatures has produced a highly altered basement formation water that is uniform in composition over distances of several kilometers. As inferred from the composition of the basal sediment pore water at the three sites, this uniformity extends from up flow zone to downflow zone in basement and the sediments. It exists in spite of large variations in heat flow and depth to basement, apparently as a result of homogenization by hydrothermal circulation in basement. Profiles for chlorinity, Na, Mg, and other species in the sediment pore waters confirm that Site 678, drilled on a localized heatflow high identified by Langseth et al. (1988), is a site of long-lived upwelling of warm water from basement through the sediments at velocities of 1 to 2 mm/yr. The upflow through the anomalously thin sediments is apparently localized above an uplifted fault block in basement. This site and other similar sites in the survey area give rise to lateral diffusion and possibly flow through the sediments, which produces lateral gradients in sediment pore-water composition at sites such as 501/504. The complementary pore-water profiles at the low-heatflow Site 677 2 km to the south indicate that downflow is occurring through the sediments there, at comparable rates of 1 to 2 mm/yr.
Resumo:
The Pliocene and Pleistocene periods are known for the onset and consequent amplification of glacial-interglacial cycles. The California margin, situated in the mid-latitudes of the northern Pacific Ocean, is expected to be one of the most interesting regions for Pliocene to Pleistocene paleoceanography because this area occupies a unique position in the ocean-atmosphere system over the region. In this study, we investigated paleoceanographic history, using fossil diatoms, since the Brunhes/Matuyama (B/M) paleomagnetic boundary in which glacial and interglacial periods began to alternate in 100-yr cycles. In Hole 1018A, to a depth corresponding to the beginning of Northern Hemisphere glaciation (late Pliocene), we investigated the responses of the ocean-atmosphere system to stepwise cooling in the California margin. Although the work is still continuing, this data report shows that fossil diatoms of Pliocene and Pleistocene sediments significantly changed both in quality and quantity and implies a possible relationship to global climatic changes.
Resumo:
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.
Resumo:
Samples were examined for diatoms from 22 holes at 11 sites cored by ODP Leg 119 on the Kerguelen Plateau and in Prydz Bay, East Antarctica. Diatoms were observed in Oligocene through Holocene sediments recovered from the Kerguelen Plateau. The diatom flora from the Kerguelen Plateau is characterized by species such as Azpeitia oligocenica, Rocella gelida, Rocella vigilans, and Synedra jouseana in the Oligocene and Crucidenticula nicobarica, Denticulopsis hustedtii, Nitzschia miocenica, and Thalassiosira miocenica in the Miocene. This somewhat cosmopolitan assemblage gives way to a Pliocene and Holocene assemblage characterized by species such as Nitzschia kerguelensis, Thalassiosira inura, and Thalassiosira torokina, which are endemic to the Southern Ocean region. Samples examined from Prydz Bay are generally devoid of diatoms. The exception is Site 739, where diatoms occur sporadically in lower Oligocene and upper Miocene through Quaternary sediments. The Leg 119 diatom biostratigraphic results allow the development of a stratigraphic framework for the Indian sector of the Southern Ocean. This diatom zonation integrates diatom zonations developed previously for other sectors of the Southern Ocean. The zonation proposed here is based on biostratigraphic events of both geographically widespread and endemic species calibrated to the paleomagnetic stratigraphy. As such, this zonation has application throughout the Southern Ocean and allows correlation from the southern high latitudes to the low latitudes.