780 resultados para embedded computing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
Resumo:
Purpose - This paper proposes an interpolating approach of the element-free Galerkin method (EFGM) coupled with a modified truncation scheme for solving Poisson's boundary value problems in domains involving material non-homogeneities. The suitability and efficiency of the proposed implementation are evaluated for a given set of test cases of electrostatic field in domains involving different material interfaces.Design/methodology/approach - the authors combined an interpolating approximation with a modified domain truncation scheme, which avoids additional techniques for enforcing the Dirichlet boundary conditions and for dealing with material interfaces usually employed in meshfree formulations.Findings - the local electric potential and field distributions were correctly described as well as the global quantities like the total potency and resistance. Since, the treatment of the material interfaces becomes practically the same for both the finite element method (FEM) and the proposed EFGM, FEM-oriented programs can, thus, be easily extended to provide EFGM approximations.Research limitations/implications - the robustness of the proposed formulation became evident from the error analyses of the local and global variables, including in the case of high-material discontinuity.Practical implications - the proposed approach has shown to be as robust as linear FEM. Thus, it becomes an attractive alternative, also because it avoids the use of additional techniques to deal with boundary/interface conditions commonly employed in meshfree formulations.Originality/value - This paper reintroduces the domain truncation in the EFGM context, but by using a set of interpolating shape functions the authors avoided the use of Lagrange multipliers as well Mathematics in Engineering high-material discontinuity.
Resumo:
A non-variational technique for computing the stress-energy tensor is presented. The prescription is used, among other things, to obtain the correct field equations for Prasanna's highly nonlinear electrodynamics.
Resumo:
The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(Q(zeta(n))/Q), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of Q(zeta(p)r), where p is an odd prime and r is a positive integer. (C) 2002 Elsevier B.V. (USA).
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
Some Voyager images showed that the F ring of Saturn is composed of at least four separate, non-intersecting, strands covering about 45 degrees in longitude. According to Murray et al. [Murray, C.D., Gordon, M., Giuliatti Winter, S.M. Unraveling the strands of Saturn's F ring. Icarus 129, 304, 1997.] this structure may be caused by undetected satellites embedded in the gaps.Due to precession, the satellites Prometheus and Pandora and the ring particles can experience periodic close encounters. Giuliatti Winter et al. [Giuliatti Winter, S.M, Murray, C.D., Gordon, M. Perturbations to Saturn's F-ring strands at their closest approach to Prometheus. Plan. Space Sciences, 48, 817, 2000.] analysed the behaviour of these four strands at closest approach with the satellite Prometheus. Their work suggests that Prometheus can induce the ring particles to scatter in the direction of the planet, thus increasing the population of small bodies in this region.In this work we analysed the effects of Prometheus on the radial structure of Saturn's F ring during the Voyager and early Cassini epochs. Our results show that at Voyager epoch Prometheus, and also Pandora, had a negligible influence in the strands. However, during the Cassini encounter Prometheus could affect the strands significantly, scattering particles of the inner strand in the direction of the planet. This process can contribute to the replenishment of material in the region between the F ring and the A ring, where two rings have recently been discovered [Porco, C. et al. Cassini imaging science. Initial results on Saturn's rings and small Satellites. Science, 307, 1226, 2005].We also analyse the behaviour of undetected satellites under the effects of these two satellites by computing the Lyapunov Characteristic Exponent. Our results show that these satellites have a chaotic behaviour which leads to a much more complex scenario. The new satellite S/2004 S6 also presents a chaotic behaviour with can alter the dynamic of the system, since this satellite crosses the orbit of the strands. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The SU(2) Shyrme model, expanding in the collective coordinates variables, gives rise to second-class constraints. Recently this system was embedded in a more general Abelian gauge theory using the BFFT Hamiltonian method. in this work we quantize this gauge theory computing the Noether current anomaly using for this two different methods: an operatorial Dirac first class formalism and the non-local BV quantization coupled with the Fujikawa regularization procedure. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The consequences of the use of embedded crack finite elements with uniform discontinuity modes (opening and sliding) to simulate crack propagation in concrete are investigated. It is shown the circumstances in which the consideration of uniform discontinuity modes is not suitable to accurately model the kinematics induced by the crack and must be avoided. It is also proposed a technique to embed cracks with non-uniform discontinuity modes into standard displacement-based finite elements to overcome the shortcomings of the uniform discontinuity modes approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
The authors studied the expression of estrogen receptor (ER) in tissues of breast carcinomas which were previously fixed in formalin and paraffin-embedded. The ER expression was correlated with several histological findings, namely grade of differentiation, tumor necrosis, desmoplasia, lymphocytic infiltration and elastosis. The ER was detected in tissues using the avidin-biotin immunoperoxidase technique associated with the H222 monoclonal antibody from Abbott. All 39 biopsies were of infiltrating ductal carcinoma of breast and 16 of them expressed ER. The statistical analysis showed that the expression of ER was correlated with histological findings of good prognosis as well differentiated carcinomas, no tumor necrosis, absence or mild lymphocytic infiltration around the tumor cells and severe elastosis.
Resumo:
PCNA is a 36-KD proliferating cell nuclear antigen associated with the cell cycle. The immunocytochemical detection of PCNA represents a useful tool for the study of tumor proliferation activity. This study documents the detection of PCNA, using antibody PC 10 in formalin-fixed, paraffin-embedded tissue, and correlates the proliferative activity of the non-Hodgkin's lymphomas (NHL) with histological grading assessed by the International Working Formulation (WF) and Kiel classification. In 92 cases of NHLs we found a strong correlation between the PCNA index and lymphoma grading. Statistically significant differences were also found between the proliferative index (PI) in low and high grade lymphomas according to the Kiel classification (t = 9.519; p < 0.001) and between low, intermediate and high grade lymphomas according to the WF classification (F = 79.01; p < 0.001). In the Kiel classification the mean of low grade lymphomas was 39.5% and of high grade 75.7%. In the WF the average of low grade lymphomas was 29.7%, intermediate 53.1% and high 75.1%. Although the differences among the groups had been significant, we found variations inside each histological subgroup in both classifications. The intermediate lymphomas were the most heterogeneous group, with PI inside the same histologic subtypes coincident with low and high grade lymphomas. Since PCNA may be used as a marker of cell proliferation in clinical studies to estimate the biological aggressiveness of lymphomas, its determination in intermediate grade NHL could be very useful to evaluate individual cases in this group and determine prognosis and probably the appropriate therapy.