909 resultados para determinants of plant community diversity and structure
Resumo:
While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.
Resumo:
STUDY OBJECTIVE: The objective of this study was to investigate the impact of two different socioeconomic status (SES) measures on child and adolescent self reported health related quality of life (HRQoL). The European KIDSCREEN project aims at simultaneous developing, testing, and implementing a generic HRQoL instrument. DESIGN AND SETTING: The pilot version of the questionnaire was applied in school surveys to students from 8 to 18 years of age, as well as to their parents, together with such determinants of health status as two SES indicators, the parental educational status and the number of material goods in the family (FAS, family affluence scale). PARTICIPANTS: Students from seven European countries: 754 children (39.8%; mean: 9.8 years), and 1142 adolescents (60.2 %; mean: 14.1 years), as well as their respective parents. MAIN RESULTS: In children, a higher parental educational status was found to have a significant positive impact on the KIDSCREEN dimensions: physical wellbeing, psychological wellbeing, moods and emotions, bullying and perceived financial resources. Increased risk of low HRQoL was detected for adolescents in connection with their physical wellbeing. Family wealth plays a part for children's physical wellbeing, parent relations and home life, and perceived financial resources. For adolescents, family wealth furthermore predicts HRQoL on all KIDSCREEN dimensions. CONCLUSIONS: There is evidence to suggest that exposure to low parental educational status may result in a decreased HRQoL in childhood, whereas reduced access to material (and thereby social) resources may lead to a lower HRQoL especially in adolescence.
Resumo:
Respiratory symptoms are common in infancy. Nevertheless, few prospective birth cohort studies have studied the epidemiology of respiratory symptoms in normal infants. The aim of this study was to prospectively obtain reliable data on incidence, severity, and determinants of common respiratory symptoms (including cough and wheeze) in normal infants and to determine factors associated with these symptoms. In a prospective population-based birth cohort, we assessed respiratory symptoms during the first year of life by weekly phone calls to the mothers. Poisson regression was used to examine the association between symptoms and various risk factors. In the first year of life, respiratory symptoms occurred in 181/195 infants (93%), more severe symptoms in 89 (46%). The average infant had respiratory symptoms for 4 weeks and 90% had symptoms for less than 12 weeks (range 0 to 23). Male sex, higher birth weight, maternal asthma, having older siblings and nursery care were associated with more, maternal hay fever with fewer respiratory symptoms. The association with prenatal maternal smoking decreased with time since birth. This study provides reliable data on the frequency of cough and wheeze during the first year of life in healthy infants; this may help in the interpretation of published hospital and community-based studies. The apparently reduced risk in children of mothers with hayfever but no asthma, and the decreasing effect of prenatal smoke exposure over time illustrate the complexity of respiratory pathology in the first year of life.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Resumo:
Housing development has increased dramatically in the Midwest with a high concentration around lakes. This development plays an important role in the economy of Northwoods communities. However, poorly planned development has the potential to alter a lake’s ecological processes and integrity. Studies have documented the impacts of housing developments and reported dramatic, negative changes to the flora and fauna in Vilas County, Wisconsin. One component of my research included examining the previously unstudied effects of residential development on the abundance and diversity of medium to large-bodied mammals using lakeshore ecosystems. The results suggest that a higher diversity of mammals were detected on low-development lakes. Coyotes were the most numerous species detected with the majority encountered on low-development lakes. White-tailed deer and red fox were more abundant on high-development lakes as compared to low-development lakes. I concluded that high-development lakes are having a negative affect on the mammal community in this area. Recently, lakeshore restoration has occurred on privately owned property in Vilas County and elsewhere in the Northwoods, but little is known about the benefit, if any, from these restoration efforts. A partnership between government agencies and academia has launched a long-term research project investigating the ecological benefits of lakeshore restoration. I investigated the impacts of using down woody material (DWM) to increase the success of restoration projects. Specifically, I tested the hypothesis that down woody material would reduce the variation in soil temperature, retain soil moisture, and improve plant survival and growth rates. I randomly assigned three DWM coverage treatments (0%, 25%, and 50%) on 3 m × 3 m experimental plots (n = 10 per treatment). The mean maximum soil temperature, temperature variation, and change in soil moisture content were significantly lower in the 25% and 50% DWM plots. I found no difference in survival, but snowberry (Symphoricarpos albus) and Barren strawberry (Waldstenia fragaroides) growth was significant greater in the 25% and 50% DWM plots. DWM addition can be considered a useful technique to physically manipulate soil properties and improve plant growth. Finally, I provided baseline data on vegetation structure, bird and small mammal community diversity and abundance for three lakes targeted for restoration efforts and their paired reference lakes. This study is one of the first of it kind in the area and continuing to document the degree of change in subsequent years will provide insight into the way the local ecosystem functions and how ecological communities are structured.
Resumo:
Ecological disturbances may be caused by a range of biotic and abiotic factors. Among these are disturbances that result from human activities such as the introduction of exotic plants and land management activities. This dissertation addresses both of these types of disturbance in ecosystems in the Upper Peninsula of Michigan. Invasive plants are a significant cause of disturbance at Pictured Rocks Natural Lakeshore. Management of invasive plants is dependent on understanding what areas are at risk of being invaded, what the consequences of an invasion are on native plant communities and how effective different tools are for managing the invasive species. A series of risk models are described that predict three stages of invasion (introduction, establishment and spread) for eight invasive plant species at Pictured Rocks National Lakeshore. These models are specific to this location and include species for which models have not previously been produced. The models were tested by collecting point data throughout the park to demonstrate their effectiveness for future detection of invasive plants in the park. Work to describe the impacts and management of invasive plants focused on spotted knapweed in the sensitive Grand Sable Dunes area of Pictured Rocks National Lakeshore. Impacts of spotted knapweed were assessed by comparing vegetation communities in areas with varying amounts of spotted knapweed. This work showed significant increases in species diversity in areas invaded by knapweed, apparently as a result of the presence of a number of non-dune species that have become established in spotted knapweed invaded areas. An experiment was carried out to compare annual spot application of two herbicides, Milestone® and Transline® to target spotted knapweed. This included an assessment of impacts of this type of treatment on non-target species. There was no difference in the effectiveness of the two herbicides, and both significantly reduced the density of spotted knapweed during the course of the study. Areas treated with herbicide developed a higher percent cover of grasses during the study, and suffered limited negative impacts on some sensitive dune species such as beach pea and dune stitchwort, and on some other non-dune species such as hawkweed. The use of these herbicides to reduce the density of spotted knapweed appears to be feasible over large scales.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
Herbivory requires animals to manage intake of toxic phytochemicals. Detoxification and excretion of these chemicals prevents toxicity, but is energetically expensive. I investigated the relationship between investment in detoxification and nutritional condition for moose on Isle Royale National Park (Alces alces) during winter, using urinary indices from urine samples collected in snow. The ratio of urinary urea nitrogen:creatinine is an indicator of nutritional condition, and the ratio of glucuronic acid:creatinine is an indicator of investment in detoxification. Nutritional condition declined with greater investment in detoxification. An alternative means of managing defensive chemical intake is to diversify the diet. Microhistological analysis of fecal pellets determined diet composition. Diet diversity was weakly associated with improved nutritional condition. However, the strongest predictors of nutritional condition were winter severity and proportion of balsam fir in the diet (a dominant food for moose in this ecosystem).
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
By analogy to the structural diversity of covalent bond networks between atoms within organic molecules, one can design topologically diverse peptides from mathematical graphs by assigning amino acids to graph nodes and peptide bonds to graph edges. The key is to use diamino acids or amino diacids as equivalents of trivalent graph nodes, which enables a variety of graph topologies beyond the standard linear and monocyclic graphs in natural peptides. Here the bicyclic decapeptide A1FGk2VFPE1AG2 (1b) was prepared and crystallized to assign its bridge stereochemistry. The bridge configuration appears as planned by the chirality of the branching amino acids. Bicyclization furthermore depends on the presence of matched chiralities in the branching amino acids. The stereoselective formation of the second bridge opens the way for the synthesis of a large family of bicyclic peptides as promising new scaffolds for drug design.
Resumo:
Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.
Resumo:
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10−12). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the ‘intermediate phenotype’ nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host–pathogen interaction.
Resumo:
One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Irrespective of the diverse stances taken on the effect of the UNESCO Convention on Cultural Diversity in the external relations context, since its wording is fairly open-ended, it is clear to all observers that the Convention’s impact will largely depend on how it is implemented domestically. The discussion on the national implementation of the Convention, both in the policy and in the academic discourses, is only just emerging, although six years the Convention’s entry into force have passed. The implementation model of the EU can set an important example for the international community and for the other State Parties that have ratified the UNESCO Convention, as both the EU and its Member States acting individually, have played a critical role in the adoption of the Convention, as well as in the longer process of promoting cultural concerns on the international scene. Against this backdrop, this article analyses the extent to which the EU internal law and policies, in particular in the key area of media, take into account the spirit and the letter of the UNESCO Convention on Cultural Diversity. Next to an assessment of the EU’s implementation of the Convention, the article also offers remarks of normative character – in the sense of what should be done to actually attain the objective of protecting and promoting cultural diversity. The article seeks to critically evaluate the present state of affairs and make some recommendations for calibration of future policies.
Resumo:
Phylogenetic diversity (PD) has been successfully used as a complement to classical measures of biological diversity such as species richness or functional diversity. By considering the phylogenetic history of species, PD broadly summarizes the trait space within a community. This covers amongst others complex physiological or biochemical traits that are often not considered in estimates of functional diversity, but may be important for the understanding of community assembly and the relationship between diversity and ecosystem functions. In this study we analyzed the relationship between PD of plant communities and land-use intensification in 150 local grassland plots in three regions in Germany. Specifically we asked whether PD decreases with land-use intensification and if so, whether the relationship is robust across different regions. Overall, we found that species richness decreased along land-use gradients the results however differed for common and rare species assemblages. PD only weakly decreased with increasing land-use intensity. The strength of the relationship thereby varied among regions and PD metrics used. From our results we suggest that there is no general relationship between PD and land-use intensification probably due to lack of phylogenetic conservatism in land- use sensitive traits. Nevertheless, we suggest that depending on specific regional idiosyncrasies the consideration of PD as a complement to other measures of diversity can be useful.