967 resultados para desorption isotherms
Resumo:
The removal study was conducted using 1.00 g of the rice husk ash (RHA) and 20.0 mL solution with concentrations in the range of 10-1000 mg/L of Zn(II). The influence of contact time, initial metal concentration, agitation and pH of the removal process was investigated. Superior removals to 95% were obtained at the end of 24 h of contact. The agitation increased in 20% the removal of Zn(II), being needed only 5 min to reach the equilibrium. The adsorption process was studied by the models of isotherms of Langmuir, Freundlich and BET, obtaining results of R L and 1/n for a process favorable of adsorption. BET isotherm best represents the equilibrium adsorption. The results showed that the RHA has the largest capacity and affinity for the removal of Zn(II).
Resumo:
Little information is available on the behavior of thiamethoxam in soils, whereas many studies show the effect of phosphate and vinasse in soils in Brazil. This study evaluated the sorption, desorption and retention of thiamethoxam in vinasse- and phosphate-amended samples of a dystrophic Red-Yellow Latosol (LVAd) and a distroferric Red Latosol (LVdf). The LVAd presented higher sorption of thiamethoxam. Phosphate did not affect the sorption or retention and vinasse increased the interaction of the compound with the soil particles, reducing desorption to the soil solution.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
This work presents a detailed study about the sorption of crystal violet (CV) cationic dye onto polyether type polyurethane foam (PUF). The sorption process was based on the formation of an ionic-pair between cationic dye and dodecylsulfate anion (SDS), which presented high affinity by PUF. Set-up employed in the study was built up by adjusting a 200 mg cylinder of PUF to the arm of an overhead stirrer. The system was characterized in relation to equilibrium and kinetic aspects and it was modeled by employing Langmuir and Freundlich isotherms. Obtained results showed that the ratio between SDS and MB concentrations played an important role on the sorption process. According to results found it was possible to retain up to 3.4 mg of dye from 200 mL of a 5.0 x 10-5 mol L-1 CV solution containing 1.25 x 10-4 mol L-1 SDS, which represented a removal efficiency of around 92%.
Resumo:
Five samples of natural clays denominated: diatomite, CN-20, CN-29, CN-40 and CN-45 from Aliança Latina LTDA were characterized by differents supplementary techniques such as: XRD, chemical analysis, adsorption N2 measurements, infrared spectroscopy analysis, thermogravimetric analysis. Clays were tested in adsorption of blue methylene. All of isotherms adjust in a model of physics adsorption with formation of multilayers, however in the case of diatomite was a favorable adsorption (type II) and the CNs were a not favorable adsorption (type III). In the case of CNs had flocculation of clay in high concentration of coloring.
Resumo:
The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.
Resumo:
Fixed-bed column studies were undertaken to evaluate the performance of a commercial Brazilian activated carbon in removing Pb(II) from aqueous environment. Breakthrough points were found out for the metal adsorption by varying different operating parameters like feed concentrations (10 and 20 mg L-1) and bed heights (0.5, 1.5 and 2.8 cm). A good agreement was observed between the experimental data and the values predicted by the bed depth service time (BDST) model. Regeneration of the exhausted columns was possible with HCl, and the adsorption capacity was maintained after three adsorption-desorption cycles.
Resumo:
Soil organic matter is the main sorptive soil compartment for atrazine in soils, followed in a minor scale by the inorganic fraction. In this study, the soil organic matter quality and atrazine sorption were investigated in four different soil types. The pedogenic environment affected the humification and therefore the chemical composition of the organic matter. The organic matter contribution to atrazine sorption was larger (60-83%) than that of the inorganic fraction. The organic matter capacity in retaining the herbicide was favoured by a higher decomposition degree and a smaller carboxylic substitution of the aliphatic chains.
Resumo:
Three analytical methods for the determination of BTEX in water were optimized and validated. With the best method the analytes were extracted of 10 mL of sample with 2.50 g of NaCl in headspace vial of 20 mL by HS and SPME to 40 ºC for 30 min for adsorption and to 250 ºC for 4 min for desorption and were analyzed by GC-MS. The recovery was between 97.9% and 104.3%, and the limit of detection was 2.4 ng L-1 for o-xylene. This method was using to analyze BTEX in water supply and surface water in Ouro Preto city. No sample had concentrations of BTEX above the legislation.
Resumo:
For this study, magnetic composite of zeolite-magnetite was prepared by mixing magnetite nanoparticles suspension with synthetic zeolite. The nanoparticles in suspension were synthesized by precipitating iron ions in a NaOH solution. The zeolite was synthesized from coal fly ash by alkaline hydrothermal treatment. The magnetic composite was characterized by XDR, SEM, magnetization measurements, IR, and BET surface area. Batch tests were carried out to investigate the adsorption of metal ions of Zn2+, Cd2+ and Pb2+ from aqueous solution onto magnetic composite. Adsorption isotherms were analyzed using Freundlich and Langmuir equations. The adsorption equilibrium data fitted well to the Langmuir equation with maximum adsorption capacities in the range of 28.5-127 mg g-1.
Resumo:
The application of organo nanoclay 5-(4-dimethylamino-benzylidene) rhodanine-immobilized as a new, easily prepared, and stable solid sorbent for preconcentration trace amounts of Au(III) ions in aqueous solution is presented. The sorption of Au(III) ions was quantitative in the pH range of 2-4, and quantitative desorption occurred instantaneously with 10.0 mL of a mixture containing 0.5 mol L-1 Na2S2O3 and KSCN. Various parameters, such as the effect of pH, breakthrough volume, extraction time, and interference of a large number of anions and cations have been studied. The proposed method has been applied for determination of trace amount of gold in water samples.
Resumo:
An undergraduate physical chemistry experiment based on the drop counting method for surface tension measurements is proposed to demonstrate adsorption isotherms of binary aqueous solutions of ethanol, n-propanol, and n-butanol. Excess surface is obtained by the derivative of surface tension taken with respect to alcohol activity, after this activity calculation using van Laar equation. Laboratory class contents are surface tension, excess surface, percolation of hydrogen bonds, micelle, activity, and ideal solution.
Resumo:
This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q0) for Pb2 +, Ag+ and Cd2 + was found to be 452.5, 188.68 and 8.85 mg g-1, respectively.
Resumo:
The clay mineral montmorillonite-K10 (MT), treated under acidic medium and saturated with potassium ions (MTK), was employed in sorption and desorption studies aiming the preconcentration of Cr(III) and the speciation analysis of chromium. The sorption process of Cr(III) was close to 100%, suggesting that MTK was a good material for Cr(III) preconcentration, although, the maximum recovery in HNO3 solution was near 89%. On the other hand, Cr(VI) practically was not retained in MTK, suggesting this material as an appropriate mineral phase to be used in speciation analysis of chromium in aqueous medium.
Resumo:
The present work describes the sorption potential of Dypterix alata (baru) for removal of Ni(II) in hydrous ethanol. Infrared spectroscopy was used for elucidating possible functional groups responsible for uptaking Ni(II). Sorption studies using Ni(II) standard solutions were carried out in batch experiments as functions of extraction time and pH solution. The Ni(II) was quantified before and after the removal experiments using Flame Atomic Absorption Spectrometry. Furthermore, based on adsorption studies and adsorption isotherms applied to the Langmuir and Freundlich models, it was possible to verify that D. alata presents a high adsorption capacity. The results show that D. alata can be used for removing Ni(II) in ethanol solutions.