998 resultados para damped wave equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of quenched disorder on the propagation of autowaves in excitable media is studied both experimentally and numerically in relation to the light-sensitive Belousov-Zhabotinsky reaction. The spatial disorder is introduced through a random distribution with two different levels of transmittance. In one dimension the (time-averaged) wave speed is smaller than the corresponding to a homogeneous medium with the mean excitability. Contrarily, in two dimensions the velocity increases due to the roughening of the front. Results are interpreted using kinematic and scaling arguments. In particular, for d = 2 we verify a theoretical prediction of a power-law dependence for the relative change of the propagation speed on the disorder amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic equation could describe a situation in which a noise has been superimposed on the temperature gradient between the two plates of a Rayleigh-Bnard cell. A linear stability analysis and numerical simulations show that, in constrast to the additive-noise case, convective structures appear in a regime in which a deterministic analysis predicts a homogeneous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiclassical coupled-wave theory is developed for TE waves in one-dimensional periodic structures. The theory is used to calculate the bandwidths and reflection/transmission characteristics of such structures, as functions of the incident wave frequency. The results are in good agreement with exact numerical simulations for an arbitrary angle of incidence and for any achievable refractive index contrast on a period of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees orthogonality of all the orbitals involved and simplifies the calculation of exchange T-matrix elements. The interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algorithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code with the distorting potential set to zero with equivalent results generated by a more robust code that uses the conventional plane-wave Born approximation. Sample calculation results are presented for ionization of K- and L-shells of various elements and compared with the available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study charmed baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector-meson exchanges to an SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in the neglected s- and u-channel diagrams. Of several novelties, we find that the Delta c(2595), which emerged as a ND quasibound state within the SU(4) approaches, becomes predominantly a ND* quasibound state in the present SU(8) scheme.