944 resultados para colorimetric assay of ethanol
Resumo:
A specific and sensitive high-performance liquid chromatographic procedure was developed for the assay of sparfloxacin in raw material and tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The method validation yielded good results and included the range, linearity, precision, accuracy, specificity and recovery. This method can also be applied to stability studies. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The extensor digitorum longus (EDL) and soleus (SOL) muscle fibres from albino rats submitted to experimental chronic alcoholism were evaluated in accordance with their metabolic and morphometric profiles. Twenty-seven male animals aged 4 months and weighing approximately 400 g were used. The animals were divided into three groups: control, isocaloric and alcoholic and sacrifices were carried out after 5, 10 and 15 months. The muscles were dissected, removed, cross-sectioned in a cryostat and submitted to the NADH (nicotinamide adenine dinucleotide) reaction. The SO (slow-twitch-oxidative), FG (fast-twitch-glycolytic) and FOG (fast-twitch-oxidative-glycolytic) muscle fibre types exhibited a polygonal, triangular or rounded shape and did not present noteworthy modifications in either muscles during the study. The cross-sectional areas of the fibres from the studied muscles did not present significant differences during the observations. Fibre area behaved similarly in the alcoholic animals up to the 10th month, i.e. it was decreased, as also observed in the other groups. At 15 months, however, all fibres were increased, with a predominance of FG fibres in the SOL muscle. Changes in fibre population were observed mainly in the SOL muscle of alcoholic animals: SO fibres were initially increased in number but decreased after the 10th month, and the opposite was observed for the population of FG fibres. FOG fibres increased linearly in number throughout the experiment. The statistical analysis showed nevertheless that the fibre population and cross-sectional area changes were not significant. In the alcoholic animals quantitative variations of muscle fibres were more evident in the SOL muscle, suggesting that the SOL muscle is more sensitive to the toxic action of ethanol. The results concerning the increased fibre diameter in alcoholic animals would be associated with muscle oedema induced directly or indirectly by the ethanol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present research, we studied wines from three different south Brazilian winemaking regions with the purpose of differentiating them by geographical origin of the grapes. Brazil's wide territory and climate diversity allow grape cultivation and winemaking in many regions of different and unique characteristics. The wine grape cultivation for winemaking concentrates in the South Region, mainly in the Serra GaA(0)cha, the mountain area of the state of Rio Grande do Sul, which is responsible for 90% of the domestic wine production. However, in recent years, two new production regions have developed: the Campanha, the plains to the south and the Serra do Sudeste, the hills to the southeast of the state. Analysis of isotopic ratios of (18)O/(16)O of wine water, (13)C/(12)C of ethanol, and of minerals were used to characterize wines from different regions. The isotope analysis of delta(18)O of wine water and minerals Mg and Rb were the most efficient to differentiate the regions. By using isotope and mineral analysis, and discrimination analysis, it was possible to classify the wines from south Brazil.
Resumo:
The glycerophosphate oxidase is a flavoprotein responsible for the catalysis of the oxidation of the glycerophosphate to dihydroxyacetone phosphate, through the reduction of the oxygen to hydrogen peroxide. The glycerophosphate oxidase from baker's yeast was specific for L-alpha-glycerol phosphate. It was estimated by monitoring the consumption of oxygen with an oxygraph. An increase of 32% in consumption of oxygen was obtained when the enzyme was concentrated 16-fold. The assay of enzyme was determined by the peroxidase chromogen method followed at 500 nm. The procedure for the standardization of the activity of the glycerophosphate oxidase from baker's yeast was accomplished, and the pH and temperature stability showed that the enzyme presented a high stability at pH 8.0, and the thermal stability was maintained up to 60 degrees C during I h. Such method allowed quantifying in the range 92-230 mM of glycerol phosphate, an important intermediate metabolite from lipid biosynthesis and glycolytic routes. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pb2CrO5 nanoparticles were embedded in an amorphous SiO2 matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb2CrO5/SiO2 compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb2CrO5/SiO2 compounds were shown and discussed. In general, an acid pH initially dissolves Pb2CrO5 nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO4 composition with grain size around 6 nm in SiO2 matrix. No Pb2CrO5 solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The proposal of this work was to study the effects of lecithin and soy oil on the fermentative performance of Saccharomyces uvarum I Z 1904, a yeast used in the industrial production of ethanol. High Test Molasses (HTM) was chosen as the fermentation media because it is a substratum that is poor in nutrients, and because it permits one to distinguish the action of lipids from other nutritional factors. The study of the optimization of the concentration of lipids by surface response analysis showed that the lipids favor the performance of the yeast principally when applied separately. Maximum concentrations of the two sources of lipids in the media stimulated the budding rate but did not constitute a protection against cell death. Considering the action of lipids on the cellular parameters studied, the supplementation of the media with 3.0 g/l of soy oil permitted the obtention of maximum responses of cellular viability, budding rate and viability of the buds after 6 successive cycles. In relation to the fermentative parameters, the use of 1.5 g/l of soy oil provided high yields and an equilibrium between the mass of ethanol produced (EM) and the alcoholic yield (Y p/s) , whereas the cellular viability after 6 cycles did not differ statistically from that observed with 3g/l of oil.
Resumo:
Late-season grapefruits (Citrus paradisi Macf. cv. Marsh seedless) were dipped in water at 50°C for 3 min with and without 200 ppm imazalil (IMZ) or 1000 ppm IMZ at 19°C and were subsequently stored at 7°C and 90-95% relative humidity (RH) for 11 weeks plus one week at 21°C and approximately 75% RH to simulate a marketing period (SMP). Residue concentrations in fruit after treatment with 200 ppm IMZ at 50°C were 3.46 ppm, about twice the level (1.80 ppm) found in fruit treated with 1000 ppm IMZ at 19°C. Fungicide degradation rates during storage showed similar patterns resulting in an approximately 50% decrease. Both fungicide treatments significantly reduced decay and chilling injury (CI) during storage and SMP. Hot water reduced CI and decay but not as effectively as the IMZ treatments. Soluble solids concentrations were not affected by treatments, IMZ treatments resulted in significantly lower values of titratable acidity and higher concentrations of ethanol in the juice after SMP. Weight loss was significantly higher in fruit dipped in water at 50°C after SMP. No visible damage occurred to the fruit as a result of any of the treatments.
Resumo:
In the yeast Saccharomyces cerevisiae a novel control exerted by TPS1 (=GGS1=FDP1=BYP1=CIF1=GLC6=TSS1)-encoded trehalose-6-phosphate synthase, is essential for restriction of glucose influx into glycolysis apparently by inhibiting hexokinase activity in vivo. We show that up to 50-fold overexpression of hexokinase does not noticeably affect growth on glucose or fructose in wild-type cells. However, it causes higher levels of glucose-6-phosphate, fructose-6-phosphate and also faster accumulation of fructose-1,6-bisphosphate during the initiation of fermentation. The levels of ATP and Pi correlated inversely with the higher sugar phosphate levels. In the first minutes after glucose addition, the metabolite pattern observed was intermediate between those of the tps1Δ mutant and tile wild-type strain. Apparently, during the start-up of fermentation hexokinase is more rate-limiting in the first section of glycolysis than phosphofructokinase. We have developed a method to measure the free intracellular glucose level which is based on the simultaneous addition of D-glucose and an equal concentration of radiolabelled L-glucose. Since the latter is not transported, the free intracellular glucose level can be calculated as the difference between the total B-glucose measured (intracellular + periplasmic/extracellular) and the total L-glucose measured (periplasmic/extracellular). The intracellular glucose level rose in 5 min after addition of 100 mM-glucose to 0.5-2 mM in the wild-type strain, ± 10 mm in a hxk1Δ hxk2Δ glk1Δ and 2-3 mM in a tps1Δ strain. In the strains overexpressing hexokinase PII the level of free intracellular glucose was not reduced. Overexpression of hexokinase PII never produced a strong effect on the rate of ethanol production and glucose consumption. Our results show that overexpression of hexokinase does not cause the same phenotype as deletion of Tps1. However, it mimics it transiently during the initiation of fermentation. Afterwards, the Tps1-dependent control system is apparently able to restrict Properly up to 50-fold higher hexokinase activity.
Resumo:
A new naphthopyrone dimer was isolated from the capitula of Paepalanthus bromelioides by chromatographic procedures. Its structure was deduced from spectrometric data. On colorimetric assay for cytotoxicity the new dimer showed IC50 of 55.9 μM. (C) 2000 Elsevier Science B.V.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. A genetic deficiency due to mutations in the gene encoding for human PNP causes T-cell deficiency as the major physiological defect. Inappropriate activation of T-cells has been implicated in several clinically relevant human conditions such as transplant tissue rejection, psoriasis, rheumatoid arthritis, lupus, and T-cell lymphomas. Human PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation. In addition, bacterial PNP has been used as reactant in a fast and sensitive spectrophotometric method that allows both quantitation of inorganic phosphate (Pi) and continuous assay of reactions that generate P i such as those catalyzed by ATPases and GTPases. Human PNP may therefore be an important biotechnological tool for P i detection. However, low expression of human PNP in bacterial hosts, protein purification protocols involving many steps, and low protein yields represent technical obstacles to be overcome if human PNP is to be used in either high-throughput drug screening or as a reagent in an affordable P i detection method. Here, we describe PCR amplification of human PNP from a liver cDNA library, cloning, expression in Escherichia coli host, purification, and activity measurement of homogeneous enzyme. Human PNP represented approximately 42% of total soluble cell proteins with no induction being necessary to express the target protein. Enzyme activity measurements demonstrated a 707-fold increase in specific activity of cloned human PNP as compared to control. Purification of cloned human PNP was achieved by a two-step purification protocol, yielding 48 mg homogeneous enzyme from 1 L cell culture, with a specific activity value of 80 U mg -1. © 2002 Elsevier Science (USA). All rights reserved.