526 resultados para clam leukaemia
Resumo:
TRIB2 is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Here, we studied murine haematopoiesis after Trib2 ablation under steady state and proliferative stress conditions, including genotoxic and oncogenic stress. At the steady state, we found that TRIB2 loss did not adversely affect peripheral blood cell counts and populations. No detectable significant differences were found in the populations of haematopoietic stem and progenitor cells. However, Trib2-/- mice had significantly higher thymic cellularity due to the increased proliferation of Trib2-/- developing thymocytes which give rise to increased number of mature thymic subsets. During stressed haematopoiesis, Trib2-/- developing thymocytes demonstrate hypersensitivity to 5-fluorouracil-induced cell death. Nevertheless, Trib2-/- mice exhibit accelerated thymopoietic recovery post 5-fluorouracil treatment due to increased cell division kinetics of developing thymocytes. In an experimental murine T-cell acute lymphoblastic leukaemia (T-ALL) model, Trib2-/- mice had reduced latency in vivo which associated with aggressive T-ALL phenotypes and impaired activation of mitogen-activated protein kinase. Gene set enrichment analysis showed that TRIB2 expression is elevated in immature subtype of human T-ALL enriched with mitogen-activated protein kinase signalling. However, TRIB2 expression is suppressed in mature subtype of human T-ALL. Thus, TRIB2 emerges as a novel regulator of thymocyte cellular proliferation, important for the thymopoietic response to genotoxic and oncogenic stress, and possessing tumour suppressor function. In Drosophila, Tribbles promotes degradation of String which is an orthologue of mammalian CDC25 phosphatases in order to arrest cell cycle during embryonic development. Here, we showed that the role of Tribbles-induced degradation of String is evolutionarily conserved in TRIB2. We found that TRIB2 interacts with CDC25B/C but not CDC25A isoform. Overexpression of TRIB2 promotes polyubiquitination and degradation of CDC25C. Hence, future works are warranted to examine TRIB2-CDC25C interaction in the context of developing thymocytes and in T-cell acute lymphoblastic leukaemia, the malignant counterpart.
Resumo:
A multicentennial and absolutely-dated shell-based chronology for the marine environment of the North Icelandic Shelf has been constructed using annual growth increments in the shell of the long-lived bivalve clam Arctica islandica. The region from which the shells were collected is close to the North Atlantic Polar Front and is highly sensitive to the varying influences of Atlantic and Arctic water masses. A strong common environmental signal is apparent in the increment widths, and although the correlations between the growth increment indices and regional sea surface temperatures are significant at the 95% confidence level, they are low (r ~ 0.2), indicating that a more complex combination of environmental forcings is driving growth. Remarkable longevities of individual animals are apparent in the increment-width series used in the chronology, with several animals having lifetimes in excess of 300 years and one, at 507 years, being the longest-lived non-colonial animal so far reported whose age at death can be accurately determined. The sample depth is at least three shells after AD 1175, and the time series has been extended back to AD 649 with a sample depth of one or two by the addition of two further series, thus providing a 1357-year archive of dated shell material. The statistical and spectral characteristics of the chronology are investigated by using two different methods of removing the age-related trend in shell growth. Comparison with other proxy archives from the same region reveals several similarities in variability on multidecadal timescales, particularly during the period surrounding the transition from the Medieval Climate Anomaly to the Little Ice Age.
Resumo:
Data archives with raw data of burrowing times and proportions of succesfully burrowed clams.
Resumo:
En este trabajo se discuten los aportes de la teoría sociológica contemporánea al debate filosófico y científico de la ontología, para ello son cotejados los componentes ontológicos de la Teoría General de Sistemas Sociales de Niklas Luhmann, lla Teoría de la Acción Comunicativa de Jürgen Habermas y la Actor-Network Theory de Bruno Latour.
Resumo:
PurposeTP53 mutations have been described in chronic lymphocytic leukemia (CLL) and have been associated with poor prognosis in retrospective studies. We aimed to address the frequency and prognostic value of TP53 abnormalities in patients with CLL in the context of a prospective randomized trial.Patients and MethodsWe analyzed 529 CLL samples from the LRF CLL4 (Leukaemia Research Foundation Chronic Lymphocytic Leukemia 4) trial (chlorambucil v fludarabine with or without cyclophosphamide) at the time of random assignment for mutations in the TP53 gene. TP53 mutation status was correlated with response and survival data.ResultsMutations of TP53 were found in 40 patients (7.6%), including 25 (76%) of 33 with 17p deletion and 13 (3%) of 487 without that deletion. There was no significant correlation between TP53 mutations and age, stage, IGHV gene mutations, CD38 and ZAP-70 expression, or any other chromosomal abnormality other than 17p deletion, in which concordance was high (96%). TP53 mutations were significantly associated with poorer overall response rates (27% v 83%; P <.001) and shorter progression-free survival (PFS) and overall survival (OS; 5-year PFS: 5% v 17%; 5-year OS: 20% v 59%; P <.001 for both). Multivariate analysis that included baseline clinical variables, treatment, and known adverse genetic factors confirmed that TP53 mutations have added prognostic value.ConclusionTP53 mutations are associated with impaired response and shorter survival in patients with CLL. Analysis of TP53 mutations should be performed in patients with CLL who have progressive disease before starting first-line treatment, and those with mutations should be selected for novel experimental therapies. J Clin Oncol 29: 2223-2229. (C) 2011 by American Society of Clinical Oncology
Resumo:
The Philadelphia negative myeloproliferative neoplasms include polycythaemia vera (PV), essential thrombocytopenia (ET) and primary myelofibrosis (PMF). Patients with these conditions were mainly thought to harbour JAK2V617F mutations or an Myeloproliferative leukaemia (MPL) substitution. In 2013, two revolutionary studies identified recurrent mutations in a gene that encodes the protein calreticulin (CALR). This mutation was detected in patients with PMF and ET with non-mutated JAK2 or MPL but was absent in patients with PV. The CALR gene encodes the calreticulin protein, which is a multifactorial protein, mainly located in the endoplasmic reticulum in chromosome 19 and regulates calcium homeostasis, chaperones and has also been implicated in multiple cellular processes including cell signalling, regulation of gene expression, cell adhesion, autoimmunity and apoptosis. Somatic 52 bp deletions and recurrent 52 bp insertion mutations in CALR were detected and all resulted in frameshift and clusters in exon 9 of the gene. This review will summarise the current knowledge on the CALR gene and mutation of the gene in pathological conditions and patient phenotypes.
Resumo:
The softshell clam Mya arenaria (L.) is currently widespread on the east and west coasts of North America. This bivalve also occurs on western European shores, where the post-Pleistocene origin of the species, whether introduced or relict, has been debated. We collected 320 M. arenaria from 8 locations in Europe and North America. Clams (n = 84) from 7 of the locations were examined for mitochondrial DNA variation by sequencing a section of the cytochrome oxidase 1 (COX1) gene. These were analysed together with 212 sequences, sourced from GenBank, from the same gene from 12 additional locations, chiefly from eastern North America but also 1 site each from western North America and from western Europe. Ten microsatellite loci were also investigated in all 320 clams. Nuclear markers showed reduced levels of variation in certain European samples. The same common COX1 haplotypes and microsatellite alleles were present throughout the range of M. arenaria, although significant differences were identified in haplotypic and allelic composition between many samples, particularly those from the 2 continents (Europe and North America). These findings support the hypothesis of post-Pleistocene colonisation of European shores from eastern North America (and the recorded human transfer of clams from the east to the west coast of North America in the 19th century).
Resumo:
In his last two State of the Union addresses, President Barack Obama has focused on the need to deliver innovative solutions to improve human health, through the Precision Medicine Initiative in 2015 and the recently announced Cancer Moonshot in 2016. Precision cancer care has delivered clear patient benefit, but even for high-impact medicines such as imatinib mesylate (Glivec) in chronic myeloid leukaemia, the excitement at the success of this practice-changing clinical intervention has been somewhat tempered by the escalating price of this 'poster child' for precision cancer medicine (PCM). Recent studies on the costs of cancer drugs have revealed significant price differentials, which are a major causative factor behind disparities in the access to new generations of immunological and molecularly targeted agents. In this perspective, we will discuss the benefits of PCM to modern cancer control, but also emphasise how increasing costs are rendering the current approaches to integrating the paradigm of PCM unsustainable. Despite the ever increasing pressure on cancer and health care budgets, innovation will and must continue. Value-based frameworks offer one of the most rational approaches for policymakers committed to improving cancer outcomes through a public health approach.
Resumo:
ASA (acetylsalicylic acid) is an NSAID (non-steroidal anti-inflammatory drug). ASA has gained attention as a potential chemopreventive and chemotherapeutic agent for several neoplasms. The aim of this study was to analyse the possible antitumoural effects of ASA in two erythroleukaemic cell lines, with or without the MDR (multidrug resistance) phenotype. The mechanism of action of different concentrations of ASA were compared in K562 (non-MDR) and Lucena (MDR) cells by analysing cell viability, apoptosis and necrosis, intracellular ROS (reactive oxygen species) formation and bcl-2, p53 and cox-2 gene expression. ASA inhibited the cellular proliferation or induced toxicity in K562 and Lucena cell lines, irrespective of the MDR phenotype. The ASA treatment provoked death by apoptosis and necrosis in K562 cells and only by necrosis in Lucena cells. ASA also showed antioxidant activity in both cell lines. The bcl-2, p53 and cox-2 genes in both cell lines treated with ASA seem to exhibit different patterns of expression. However, normal lymphocytes treated with the same ASA concentrations were more resistant than tumoral cells. The results of this work show that both cell lines responded to treatment with ASA, demonstrating a possible antitumoral and anti-MDR role for this drug.
Resumo:
The length weight relationship of three benthic bivalves namely, Senilia (= Anadara) senilis (bloody cockle), Tagelus adansonii (knife clam), Tellina nymphalis (soft shell clam) from the Andoni Flats were determined. The bivalves which are of ecological importance were obtained from the intertidal areas of the Andoni Flats. Shell lengths of the bivalves were measured and corresponding dry weight measurements were also taken. The data obtained were then subjected to regression analysis using the FAO-ICLARM Fish Stock Assessment Tools (FiSAT). The length weight relationships obtained from the FiSAT analysis indicated isometric growth for Senilia (= Anadara) senilis, with slope (b) value of 2.942; positive allometric growth for Tagelus adansonii, with a ‘b’ value of 3.395 and negative allometric growth for Tellina nymphalis with ‘b’ value of 2.633. KEYWORDS: bivalves, length-weight, isometric growth, allometric growth, cockle, clam.
Resumo:
This paper reports the use of proof planning to diagnose errors in program code. In particular it looks at the errors that arise in the base cases of recursive programs produced by undergraduates. It describes two classes of error that arise in this situation. The use of test cases would catch these errors but would fail to distinguish between them. The system adapts proof critics, commonly used to patch faulty proofs, to diagnose such errors and distinguish between the two classes. It has been implemented in Lambda-clam, a proof planning system, and applied successfully to a small set of examples.
Resumo:
Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.
Resumo:
This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a heuristic for guiding rewriting steps in induction that has been used successfully in proof planning inductive proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs automatically. Accordingly, ordinal arithmetic has been implemented in lambda-clam, a higher order proof planning system for induction, and standard undergraduate text book problems have been successfully planned. We show the synthesis of a fixpoint for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting results than the textbook examples tried so far.
Resumo:
Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.
Resumo:
Hematopoiesis is the tightly controlled and complex process in which the entire blood system is formed and maintained by a rare pool of hematopoietic stem cells (HSCs), and its dysregulation results in the formation of leukaemia. TRIB2, a member of the Tribbles family of serine/threonine pseudokinases, has been implicated in a variety of cancers and is a potent murine oncogene that induces acute myeloid leukaemia (AML) in vivo via modulation of the essential myeloid transcription factor CCAAT-enhancer binding protein α (C/EBPα). C/EBPα, which is crucial for myeloid cell differentiation, is commonly dysregulated in a variety of cancers, including AML. Two isoforms of C/EBPα exist - the full-length p42 isoform, and the truncated oncogenic p30 isoform. TRIB2 has been shown to selectively degrade the p42 isoform of C/EBPα and induce p30 expression in AML. In this study, overexpression of the p30 isoform in a bone marrow transplant (BMT) leads to perturbation of myelopoiesis, and in the presence of physiological levels of p42, this oncogene exhibited weak transformative ability. It was also shown by BMT that despite their degradative relationship, expression of C/EBPα was essential for TRIB2 mediated leukaemia. A conditional mouse model was used to demonstrate that oncogenic p30 cooperates with TRIB2 to reduce disease latency, only in the presence of p42. At the molecular level, a ubiquitination assay was used to show that TRIB2 degrades p42 by K48-mediated proteasomal ubiquitination and was unable to ubiquitinate p30. Mutation of a critical lysine residue in the C-terminus of C/EBPα abrogated TRIB2 mediated C/EBPα ubiquitination suggesting that this site, which is frequently mutated in AML, is the site at which TRIB2 mediates its degradative effects. The TRIB2-C/EBPα axis was effectively targeted by proteasome inhibition. AML is a very difficult disease to target therapeutically due to the extensive array of chromosomal translocations and genetic aberrations that contribute to the disease. The cell from which a specific leukaemia arises, or leukaemia initiating cell (LIC), can affect the phenotype and chemotherapeutic response of the resultant disease. The LIC has been elucidated for some common oncogenes but it is unknown for TRIB2. The data presented in this thesis investigate the ability of the oncogene TRIB2 to transform hematopoietic stem and progenitor cells in vitro and in vivo. TRIB2 overexpression conferred in vitro serially replating ability to all stem and progenitor cells studied. Upon transplantation, only TRIB2 overexpressing HSCs and granulocyte/macrophage progenitors (GMPs) resulted in the generation of leukaemia in vivo. TRIB2 induced a mature myeloid leukaemia from the GMP, and a mixed lineage leukaemia from the HSC. As such the role of TRIB2 in steady state hematopoiesis was also explored using a Trib2-/- mouse and it was determined that loss of Trib2 had no effect on lineage distribution in the hematopoietic compartment under steady-state conditions. The process of hematopoiesis is controlled by a host of lineage restricted transcription factors. Recently members of the Nuclear Factor 1 family of transcription factors (NFIA, NFIB, NFIC and NFIX) have been implicated in hematopoiesis. Little is known about the role of NFIX in lineage determination. Here we describe a novel role for NFIX in lineage fate determination. In human and murine datasets the expression of Nfix was shown to decrease as cells differentiated along the lymphoid pathway. NFIX overexpression resulted in enhanced myelopoiesis in vivo and in vitro and a block in B cell development at the pre-pro-B cell stage. Loss of NFIX resulted in disruption of myeloid and lymphoid differentiation in vivo. These effects on stem and progenitor cell fate correlated with changes in the expression levels of key transcription factors involved in hematopoietic differentiation including a 15-fold increase in Cebpa expression in Nfix overexpressing cells. The data presented support a role for NFIX as an important transcription factor influencing hematopoietic lineage specification. The identification of NFIX as a novel transcription factor influencing lineage determination will lead to further study of its role in hematopoiesis, and contribute to a better understanding of the process of differentiation. Elucidating the relationship between TRIB2 and C/EBPα not only impacts on our understanding of the pathophysiology of AML but is also relevant in other cancer types including lung and liver cancer. Thus in summary, the data presented in this thesis provide important insights into key areas which will facilitate the development of future therapeutic approaches in cancer treatment.