961 resultados para aquatic macroinvertebrates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With water immersion, gravity is partly eliminated, and the water exerts a pressure on the body surface. Consequently there is a blood volume shift from the periphery to the central circulation, resulting in marked volume loading of the thorax and heart. This paper presents a selection of published literature on water immersion, balneotherapy, aqua exercises, and swimming, in patients with left ventricular dysfunction (LVD) and/or stable chronic heart failure (CHF). Based on exploratory studies, central hemodynamic and neurohumoral responses of aquatic therapies will be illustrated. Major findings are: 1. In LVD and CHF, a positive effect of therapeutic warm-water tub bathing has been observed, which is assumed to be from afterload reduction due to peripheral vasodilatation caused by the warm water. 2. In coronary patients with LVD, at low-level water cycling the heart is working more efficiently than at lowlevel cycling outside of water. 3. In patients with previous extensive myocardial infarction, upright immersion to the neck resulted in temporary pathological increases in mean pulmonary artery pressure (mPAP) and mean pulmonary capillary pressures (mPCP). 4. Additionally, during slow swimming (20-25m/min) the mPAP and/or PCP were higher than during supine cycling outside water at a 100W load. 5. In CHF patients, neck- deep immersion resulted in a decrease or no change in stroke volume. 6. Although patients are hemodynamically compromised, they usually maintain a feeling of well-being during aquatic therapy. Based on these findings, clinical indications for aquatic therapies are proposed and ideas are presented to provoke further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-rich copper mine tailings, called stamp sands, were dumped by mining companies directly into streams and along the Lake Superior shoreline, degrading Keweenaw Peninsula waterways. One of the largest disposal sites is near Gay, Michigan, where tailings have been moved along the shoreline by currents since mining ceased. As a result, the smallest sand particles have been washed into deeper water and are filling the interstitial spaces of Buffalo Reef, a critical lake trout spawning site. This research is the first to investigate if stamp sand is detrimental to survival and early development of eggs and larvae of lake sturgeon, lake trout, and Northern leopard frogs, and also examines if the presence of stamp sands influences substrate selection of earthworms. This study found that stamp sand had significantly larger mean particle sizes and irregular shapes compared to natural sand, and earthworms show a strong preference for natural substrate over any combination that included stamp sand. Additionally, copper analysis (Cu2+) of surface water over stamp sand and natural sand showed concentrations were significantly higher in stamp sand surface water (100 μg/L) compared to natural sand surface water (10 μg/L). Frog embryos had similar hatch success over both types of sand, but tadpoles reared over natural sand grew faster and had higher survival rates. Eggs of lake sturgeon showed similar hatch success and development over natural vs. stamp sand over 17 days, while lake trout eggs hatched earlier and developed faster when incubated over stamp sand, yet showed similar development over a 163 day period. Copper from stamp sand appears to impact amphibians more than fish species in this study. These results will help determine what impact stamp sand has on organisms found throughout the Keweenaw Peninsula which encounter the material at some point in their life history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper mining boom in Michigan's Upper Peninsula ended in the mid-1960s, but the historical mining still affects the region to this day. Earlier studies conducted in the Keweenaw have shown that trace metals in the sediments negatively affect benthic macroinvertebrate populations. However, because the concentrations of trace metals that are observed to be toxic often differ significantly between the laboratory and the environment, a better method for determining toxic levels of trace metals in the natural environment is desirable in order to establish surface water quality guidelines that effectively protect aquatic life. There were four research objectives for this research project. First, to determine if trace-level concentrations of copper can result in detectable ecological impacts even in the presence of high dissolved organic carbon (DOC). Second, to determine if there is a "safe" concentration of total dissolved copper below which there is little to no ecological impairment. Third, to establish which streams in the Keweenaw Peninsula have been most impacted by elevated levels of total dissolved copper. Fourth, to use this information to evaluate revisions to the water quality criterion for copper that were recently proposed by the Michigan Department of Environmental Quality (MDEQ). In order to collect water quality and macroinvertebrate data, two sampling surveys of approximately 50 streams were completed in the spring and summer of 2012. Our findings demonstrate that negative ecological impacts can be detected even in the presence of high concentrations of DOC. The majority of surveyed streams showed evidence of total dissolved copper concentrations that were elevated above background levels. Our findings suggest that there are detectable negative impacts below the current water quality standard for copper in many Keweenaw streams. The diversity of benthic macroinvertebrates and the number of species present has been reduced as a result of exposure to copper. Additionally, the multimetric approach used by MDEQ is unable to detect copper impairment in local streams due to the use of several insensitive metrics. The proposed changes to the copper criterion would increase the amount of total dissolved copper allowable despite the fact that approximately 25% of streams sampled have aquatic chemistries that would leave them vulnerable to high levels of copper ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancers of the reproductive system are among the leading causes of mortality in women in the United States. While both genetic and environmental factors have been implicated in their etiology, the extent of the contribution of environmental factors to human diseases remains controversial. To better address the role of environmental exposures in cancer etiology, there has been an increasing focus on the development of nontraditional, environmentally relevant models. Our research involves the development of one such model, Gonadal tumors have been described in the softshell clam (Mya arenaria) in Maine and the hardshell clam (Mercenaria spp.) from Florida. Prevalence of these tumors is as high as 40% in some populations in eastern Maine and 60% in Some areas along the Indian River in Florida. The average tumor prevalence in Maine and Florida is approximately 20 and 11%, respectively. An association has been suggested between the use of herbicides and the incidence of gonadal tumors in the softshell clam in Maine. The role of environmental exposures in the development of the tumors in Mercenaria in Florida is unknown, however, there is evidence that genetic factors may contribute to its etiology. Epidemiologic studies of human populations in these same areas show a higher than average mortality rate due to cancers of the reproductive system in women, including both ovarian and breast career. The relationship, if any, among these observations is unknown, Our studies on the molecular basis of this disease in clams may provide additional information on environmental exposures and their possible link to cancer in clams and other organisms, including humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic ecosystems are confronted with multiple stress factors. Current approaches to assess the risk of anthropogenic stressors to aquatic ecosystems are developed for single stressors and determine stressor effects primarily as a function of stressor properties. The cumulative impact of several stressors, however, may differ markedly from the impact of the single stressors and can result in nonlinear effects and ecological surprises. To meet the challenge of diagnosing and predicting multiple stressor impacts, assessment strategies should focus on properties of the biological receptors rather than on stressor properties. This change of paradigm is required because (i) multiple stressors affect multiple biological targets at multiple organizational levels, (ii) biological receptors differ in their sensitivities, vulnerabilities, and response dynamics to the individual stressors, and (iii) biological receptors function as networks, so that actions of stressors at disparate sites within the network can lead via indirect or cascading effects, to unexpected outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To satisfy REACH requirements a high number of data on chemical of interest should be supplied to the European Chemicals Agency. To organize the various kinds of information and help the registrants to choose the best strategy to obtain the needed information limiting at the minimum the use of animal testing, integrated testing strategies (ITSs) schemes can be used. The present work deals with regulatory data requirements for assessing the hazards of chemicals to the aquatic pelagic environment. We present an ITS scheme for organizing and using the complex existing data available for aquatic toxicity assessment. An ITS to optimize the choice of the correct prediction strategy for aquatic pelagic toxicity is described. All existing information (like physico-chemical information), and all the alternative methods (like in silico, in vitro or the acute-to-chronic ratio) are considered. Moreover the weight of evidence approach to combine the available data is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feedlots have increased in several regions of Argentina, particularly in the Pampas. The absence of adequate treatments of the effluents produced in these establishments creates serious problems to the society. Phytoremediation can be defined as inexpensive and environmentally sustainable strategy used to remove pollutants by plants. The aim of this study was to evaluate the remediation potential of two macrophyte species (Eichhornia crassipes and Hydrocotyle ranunculoides) on a feedlot effluent. This effluent was treated with these species for 31 days. Control and macrophyte treatments decreased dissolved inorganic nitrogen (DIN), Kjeldahl nitrogen (Kj N), biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved salts (TDS), total phosphorus (TP), Pb, Zn and Cr levels. At macrophyte treatments, relatively constant pH levels were kept and decreased EC and TDS values were obtained compared to control, mitigating the release of contaminants and potential greenhouse gases to the atmosphere. Moreover, significant increases in biomass were obtained, being higher in E. crassipes. The results allow concluding that the presence of aquatic plants increases the removal rates of nutrients, organic matter and heavy metals from wastewater in approximately 10-17 days for a feedlot effluent with high organic load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a long tradition of river monitoring using macroinvertebrate communities to assess environmental quality in Europe. A promising alternative is the use of species life-history traits. Both methods, however, have relied on the time-consuming identification of taxa. River biotopes, 1-100 m**2 'habitats' with associated species assemblages, have long been seen as a useful and meaningful way of linking the ecology of macroinvertebrates and river hydro-morphology and can be used to assess hydro-morphological degradation in rivers. Taxonomic differences, however, between different rivers had prevented a general test of this concept until now. The species trait approach may overcome this obstacle across broad geographical areas, using biotopes as the hydro-morphological units which have characteristic species trait assemblages. We collected macroinvertebrate data from 512 discrete patches, comprising 13 river biotopes, from seven rivers in England and Wales. The aim was to test whether river biotopes were better predictors of macroinvertebrate trait profiles than taxonomic composition (genera, families, orders) in rivers, independently of the phylogenetic effects and catchment scale characteristics (i.e. hydrology, geography and land cover). We also tested whether species richness and diversity were better related to biotopes than to rivers. River biotopes explained 40% of the variance in macroinvertebrate trait profiles across the rivers, largely independently of catchment characteristics. There was a strong phylogenetic signature, however. River biotopes were about 50% better at predicting macroinvertebrate trait profiles than taxonomic composition across rivers, no matter which taxonomic resolution was used. River biotopes were better than river identity at explaining the variability in taxonomic richness and diversity (40% and <=10%, respectively). Detailed trait-biotope associations agreed with independent a priori predictions relating trait categories to near river bed flows. Hence, species traits provided a much needed mechanistic understanding and predictive ability across a broad geographical area. We show that integration of the multiple biological trait approach with river biotopes at the interface between ecology and hydro-morphology provides a wealth of new information and potential applications for river science and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we use compound-specific hydrogen isotope data of aquatic and terrestrial lipid biomarkers from precisely dated annually laminated sediments from Lake Meerfelder Maar (MFM) in Western Germany to reconstruct decadal resolved hydroclimatic changes during the Younger Dryas. We show that cooling at MFM begun synchronous to the onset of cooling in Greenland at 12.850 years BP. Major environmental changes at MFM however took place 170 years later as a result of substantially drier conditions.