987 resultados para Wheelock, Eleazar, 1711-1779.
Resumo:
Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.
Resumo:
This paper investigates the problem of speaker identi-fication and verification in noisy conditions, assuming that speechsignals are corrupted by environmental noise, but knowledgeabout the noise characteristics is not available. This research ismotivated in part by the potential application of speaker recog-nition technologies on handheld devices or the Internet. Whilethe technologies promise an additional biometric layer of securityto protect the user, the practical implementation of such systemsfaces many challenges. One of these is environmental noise. Due tothe mobile nature of such systems, the noise sources can be highlytime-varying and potentially unknown. This raises the require-ment for noise robustness in the absence of information about thenoise. This paper describes a method that combines multicondi-tion model training and missing-feature theory to model noisewith unknown temporal-spectral characteristics. Multiconditiontraining is conducted using simulated noisy data with limitednoise variation, providing a “coarse” compensation for the noise,and missing-feature theory is applied to refine the compensationby ignoring noise variation outside the given training conditions,thereby reducing the training and testing mismatch. This paperis focused on several issues relating to the implementation of thenew model for real-world applications. These include the gener-ation of multicondition training data to model noisy speech, thecombination of different training data to optimize the recognitionperformance, and the reduction of the model’s complexity. Thenew algorithm was tested using two databases with simulated andrealistic noisy speech data. The first database is a redevelopmentof the TIMIT database by rerecording the data in the presence ofvarious noise types, used to test the model for speaker identifica-tion with a focus on the varieties of noise. The second database isa handheld-device database collected in realistic noisy conditions,used to further validate the model for real-world speaker verifica-tion. The new model is compared to baseline systems and is foundto achieve lower error rates.
Resumo:
This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.
Resumo:
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is an ideally suited to achieve highly pipelined, adaptive digital filter implementations. The paper presents an efficient method of determining the delays in the DLMS filter and then transferring these delays using retiming in order to achieve fully pipelined circuit architectures for FPGA implementation. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which considerable reduce the number of delays and convergence time and give superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughout rate of 182 Msample/s.
Resumo:
A spectrally efficient strategy is proposed for cooperative multiple access (CMA) channels in a centralized communication environment with $N$ users. By applying superposition coding, each user will transmit a mixture containing its own information as well as the other users', which means that each user shares parts of its power with the others. The use of superposition coding in cooperative networks was first proposed in , which will be generalized to a multiple-user scenario in this paper. Since the proposed CMA system can be seen as a precoded point-to-point multiple-antenna system, its performance can be best evaluated using the diversity-multiplexing tradeoff. By carefully categorizing the outage events, the diversity-multiplexing tradeoff can be obtained, which shows that the proposed cooperative strategy can achieve larger diversity/multiplexing gain than the compared transmission schemes at any diversity/multiplexing gain. Furthermore, it is demonstrated that the proposed strategy can achieve optimal tradeoff for multiplexing gains $0leq r leq 1$ whereas the compared cooperative scheme is only optimal for $0leq r leq ({1}/{N})$. As discussed in the paper, such superiority of the proposed CMA system is due to the fact that the relaying transmission does not consume extra channel use and, hence, the deteriorating effect of cooperative communication on the data rate is effectively limited.
Resumo:
In a typical shoeprint classification and retrieval system, the first step is to segment meaningful basic shapes and patterns in a noisy shoeprint image. This step has significant influence on shape descriptors and shoeprint indexing in the later stages. In this paper, we extend a recently developed denoising technique proposed by Buades, called non-local mean filtering, to give a more general model. In this model, the expected result of an operation on a pixel can be estimated by performing the same operation on all of its reference pixels in the same image. A working pixel’s reference pixels are those pixels whose neighbourhoods are similar to the working pixel’s neighbourhood. Similarity is based on the correlation between the local neighbourhoods of the working pixel and the reference pixel. We incorporate a special instance of this general case into thresholding a very noisy shoeprint image. Visual and quantitative comparisons with two benchmarking techniques, by Otsu and Kittler, are conducted in the last section, giving evidence of the effectiveness of our method for thresholding noisy shoeprint images.
Resumo:
In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.