957 resultados para Velvet Underground


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large ancient underground rock caverns in Longyou is an important component of grotto cultural. Current task facing the long-term preservation of these unmovable cultural relics is arduous and challenging. The deformation failure of the caverns' surrounding rock is deteriorating. The weathering velocity of these caverns is accelerating. With the strength of caverns' surrounding rock worsening, critical rocks were generated in local regions of the caverns' vault and posing a threat to the security of people passing by. Selection of a maximum-security route and construction a aisle in the caverns might be an efficient way to ensure the security of tourists and reach the target of long-term preservation. The deformation and destruction of the ancient underground caverns is primarily dominated by geological conditions and the special structure of caverns. Based on field investigation, several fundamental conditions for deformation and failure are recognized, and nine deformation and fracture patterns of the Longyou grotto are proposed. In order to judge the stability of caverns’ surrounding rock, the element safety coefficient method is presented. An explicit explanation for the meaning of the method is deduced using Mohr-Coulomb strength criterion. Numerical analyses are carried out in the dissertation through FLAC3D code. Through numerical analysis, the stress distribution regularities of the caverns’ roofs, piles and public side wall are analysed, and the stability properties of caverns’ surrounding rock are also assessed. At the same time, the element safety coefficient method is introduced to contrast the stability degree of different regions in caverns. The above analyses are bases for choosing the optimal tourism routes in the caverns of Longyou grotto. The impact of surface load on the stability of shallow buried cavities in Longyou grotto is evaluated, the results show that building load has significant influence on the stability of the No.1 cavern’s roof, pile and public side wall between the No.1 cavern and the No.2 cavern, pedestrian load has less impact on the stability of surrounding rock than building load. The principles for choosing the optimal tourism routes in the caverns are discussed. With these principles, the dissertation makes a systematic research on the geological analytic method, numerical analytic method and meeting tourism requirements method, which are used in selecting the optimal tourism routes in the caverns. In order to achieve the best effect in the process of tourism routes selection, the above three method are integrated through Theory of Engineering Geomechanics Meta-system(EGMS). According to field investigations, numerical analyses, tourism requirements and expert experiences, the optimal tourism routes through No.1 to No.5 cavern are determined preliminarily. The obtained results from the research work are useful for the security aisle's construction, they also have reference value to other projects in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on brief introduction of seismic exploration and it's general developing situation, the seismic exploration method in field work implementation and some problems frequently encountered in field, which should be pay attention to, are analyzed in detail. The most economic field work techniques are emphasized. Then the seismic data processing flow and it's interpretation technique about the processing results are presented. At last four examples of seismic prospecting in gold deposits are showed. The main conclusions of our research are: 1. Seismic prospecting technique is a very efficient method in the prediction of concealed gold deposits. With appropriate application, it can absolutely reflect the detail underground geological structure in the condition of rugged area and complicated geological environment. 2. The field geometry should be designed and changed according to different kinds of objective exploration depth and ground situation. The best field implementing parameters which include offset, the distance between two adjacent traces, the quantity of dynamite and the depth of hole for explosion, should be determined with examination. Only this way, the high quality original seismic data can be gotten. 3. In seismic data processing, the edition of invalid trace and source gather, signal enhancement, velocity analysis and migration are the key steps. It has some different points with conventional processing and needs a new processing flow and methods which is suitable to the data acquired in rugged area and complicated geological environment. 4. The new common reflection area stacking method in crooked line data processing is an efficient method to improve the signal to noise ratio of seismic data The innovations of our research work are: 1. In the areas which were considered to be forbidden zone, we implement the seismic exploration in several gold deposits in China through our application. All acquire distinguished effects. This show the seismic exploration method is a new effective method in the prediction of concealed gold deposits. 2. We developed a set of seismic field work techniques and data processing which is suitable to complex environment, especially find a effective method in stacking and noise elimination in crooked line data processing. 3. In the field of seismic profile interpretation, through our research work, we are convinced of that: in different kinds of geological condition, the seismic reflection character are not same. For example the lava, the intrusion rock and sediment layers are different in the character of reflection structure and strength. So we accumulate some experience about seismic data interpretation in the area of gold deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a viewpoint of an intricate system demanding high, this thesis advances a new concept that urban sustainable development stratagem is a high harmony and amalgamation among urban economy, geo-environment and tech-capital, and the optimum field of which lies in their mutual matching part, which quantitatively demarcates the optimum value field of urban sustainable development and establishes the academic foundation to describe and analyze sustainable development stratagem. And establishes a series of cause-effect model, a analysissitus model, flux model as well as its recognizing mode for urban system are established by the approach of System Dynamics, which can distinguish urban states by its polarity of entropy flows. At the same time, the matter flow, energy flow and information flow which exist in the course of urban development are analyzed based on the input/output (I/O) relationships of urban economy. And a new type of I/O relationships, namely new resources-environment account, are established, in which both resource and environment factors are considered. All above that settles a theoretic foundation for resource economy and environment economy as well as quantitative relationships of inter-function between urban development and geoenvironment, and gives a new approach to analyze natinal economy and urban sustainable development. Based on an analysis of the connection between resource-environmental construct of geoenvironment and urban economy development, the Geoenvironmental Carrying Capability (GeCC) is analyzed. Further more, a series of definitions and formula about the Gross Carrying Capability (GCC), Structure Carrying Capability (SCC) and Impulse Carrying Capability (ICC) is achieved, which can be applied to evaluate both the quality and capacity of geoenvironment and thereunder to determine the scale and velocity for urban development. A demonstrative study of the above is applied to Beihai city (Guangxi province, PRC), and the numerical value laws between the urban development and its geoenvironment is studied by the I/O relationship in the urban economy as following: · the relationships between the urban economic development and land use as well as consumption of underground water, metal mineral, mineral energy source, metalloid mineral and other geologic resources. · the relationships between urban economy and waste output such as industrial "3 waste", dust, rubbish and living polluted water as well as the restricting impact of both resource-environmental factors and tech-capital on the urban grow. · Optimization and control analysis on the reciprocity between urban economy and its geoenvironment are discussed, and sensitive factors and its order of the urban geoenvironmental resources, wastes and economic sections are fixed, which can be applied to determine the urban industrial structure, scale, grow rate matching with its geoenvironment and tech-capital. · a sustainable development stratagem for the city is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South continent of China lies to southeast of Eurasia block. It is an active area from the view of crust growth and continent spread and is a transition zone between continental crust and oceanic crust. The compressional wave velocities and anisotropies of typical crustal metamorphic rocks were determined at high temperature (up to 1000 ℃) and high pressure(up to 800MPa). The experimental results show that the velocities generally increase with pressure, and is unaffected by temperature up to around 550 ℃. But the velocities of all experimental samples start to drop above a temperature point. For an example, this greatly reduce the speed of wave propagation in amphibolite and serpentinite above 760 ℃ and above 550 ℃ respectively, which may be due to dehydrate of amphibole and serpentine. P-wave anisotropy coefficients of those rocks range from 2% to 10% at 800MPa and 500 ℃. The anisotropies decrease with increasing pressure at room temperature, but hardly change as function of temperature at constant 800MPa or 600MPa pressure. The average velocity of the six crustal rocks is 6.28km/s under the condition of 800MPa and 550 ℃, which is consistent with the result of deep seismic sounding data. Based on this experimental result, we deduce there may exist a lot of felsic granulites and amphibolites at the depth of 15-25km underground. With increasing temperature and pressure, the deformation behavior of the rocks undergoes from localized brittle fracture, semi-brittle deformation (cataclastic flow or semi-brittle faulting, semi-brittle flow) to homogeneous crystal-plastic flow. This transition is associated with mechanical behavior and micro-mechanism. It is very important to understanding earthquake source mechanics, the strength of the lithosphere and the style of deformation. The experiments were conducted at temperature of 600-1000 ℃, confining pressure of 500MPa, and stain rates of 10~(-4)-10~(-6) S~(-1). For fine-grained natural amphibolite, the results of experiments show that brittle faulting is major failure mode at temperature <600 ℃, but crystal-plastic deformation is dominate at temperature >800 ℃, and there is a transition with increasing temperature from sembrittle faulting to cataclastic flow and sembrittle flow at temperature of 670-750 ℃. For medium-grained natural Felsic granulite, the results of experiments show that brittle faulting is major failure mode at temperature <500 ℃, but crystal-plastic deformation is dominate at temperature >700 ℃, and there is a transition with increasing temperature from semibrittle faulting to cataclastic flow and sembrittle flow at temperature of 500-600 ℃.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cut-and-filling stoping becomes more and more important in mining industry for the advantage in protecting environment and its adaptability. However, there is less research in the movement of rock mass and the ground displacement caused by the mining method. In this paper, based on relevant geological and geotechnical test data, the strata movement and the ground displacement of Jinchuan nickel mine are studied comprehensively. The main achievement in this paper can be drawn as follows. Geologic conditions of mining area No.2 of Jinchuan Nickel mine are summed up and influential factors of the movement of rock mass and the surface displacement are analyzed. For recognized the shape of orebody No.l, three-dimensional model is established with 3D Studio MAX software. Based on reconnaissance trip, the monitoring data of GPS and ground fissures in mining area No.2 of Jinchuan Nickel mine are discussed. Then, the rule of the surface displacement and the reason of ground fissures generation are preliminary analyzed. The characteristic of ground movement, surrounding stress and strain in the process of excavation and backfilled is research and analyzed with the method of numerical simulation. The rule of the movement of rock mass and the surface displacement in mining area No.2 of Jinchuan Nickel mine is summed up. The influence of the movement of rock mass and the surface displacement by the dip angle of orebody No.l in mining area No.2 is examined and then the strata movement and the ground displacement is predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissertation addressed the problems of signals reconstruction and data restoration in seismic data processing, which takes the representation methods of signal as the main clue, and take the seismic information reconstruction (signals separation and trace interpolation) as the core. On the natural bases signal representation, I present the ICA fundamentals, algorithms and its original applications to nature earth quake signals separation and survey seismic signals separation. On determinative bases signal representation, the paper proposed seismic dada reconstruction least square inversion regularization methods, sparseness constraints, pre-conditioned conjugate gradient methods, and their applications to seismic de-convolution, Radon transformation, et. al. The core contents are about de-alias uneven seismic data reconstruction algorithm and its application to seismic interpolation. Although the dissertation discussed two cases of signal representation, they can be integrated into one frame, because they both deal with the signals or information restoration, the former reconstructing original signals from mixed signals, the later reconstructing whole data from sparse or irregular data. The goal of them is same to provide pre-processing methods and post-processing method for seismic pre-stack depth migration. ICA can separate the original signals from mixed signals by them, or abstract the basic structure from analyzed data. I surveyed the fundamental, algorithms and applications of ICA. Compared with KL transformation, I proposed the independent components transformation concept (ICT). On basis of the ne-entropy measurement of independence, I implemented the FastICA and improved it by covariance matrix. By analyzing the characteristics of the seismic signals, I introduced ICA into seismic signal processing firstly in Geophysical community, and implemented the noise separation from seismic signal. Synthetic and real data examples show the usability of ICA to seismic signal processing and initial effects are achieved. The application of ICA to separation quake conversion wave from multiple in sedimentary area is made, which demonstrates good effects, so more reasonable interpretation of underground un-continuity is got. The results show the perspective of application of ICA to Geophysical signal processing. By virtue of the relationship between ICA and Blind Deconvolution , I surveyed the seismic blind deconvolution, and discussed the perspective of applying ICA to seismic blind deconvolution with two possible solutions. The relationship of PC A, ICA and wavelet transform is claimed. It is proved that reconstruction of wavelet prototype functions is Lie group representation. By the way, over-sampled wavelet transform is proposed to enhance the seismic data resolution, which is validated by numerical examples. The key of pre-stack depth migration is the regularization of pre-stack seismic data. As a main procedure, seismic interpolation and missing data reconstruction are necessary. Firstly, I review the seismic imaging methods in order to argue the critical effect of regularization. By review of the seismic interpolation algorithms, I acclaim that de-alias uneven data reconstruction is still a challenge. The fundamental of seismic reconstruction is discussed firstly. Then sparseness constraint on least square inversion and preconditioned conjugate gradient solver are studied and implemented. Choosing constraint item with Cauchy distribution, I programmed PCG algorithm and implement sparse seismic deconvolution, high resolution Radon Transformation by PCG, which is prepared for seismic data reconstruction. About seismic interpolation, dealias even data interpolation and uneven data reconstruction are very good respectively, however they can not be combined each other. In this paper, a novel Fourier transform based method and a algorithm have been proposed, which could reconstruct both uneven and alias seismic data. I formulated band-limited data reconstruction as minimum norm least squares inversion problem where an adaptive DFT-weighted norm regularization term is used. The inverse problem is solved by pre-conditional conjugate gradient method, which makes the solutions stable and convergent quickly. Based on the assumption that seismic data are consisted of finite linear events, from sampling theorem, alias events can be attenuated via LS weight predicted linearly from low frequency. Three application issues are discussed on even gap trace interpolation, uneven gap filling, high frequency trace reconstruction from low frequency data trace constrained by few high frequency traces. Both synthetic and real data numerical examples show the proposed method is valid, efficient and applicable. The research is valuable to seismic data regularization and cross well seismic. To meet 3D shot profile depth migration request for data, schemes must be taken to make the data even and fitting the velocity dataset. The methods of this paper are used to interpolate and extrapolate the shot gathers instead of simply embedding zero traces. So, the aperture of migration is enlarged and the migration effect is improved. The results show the effectiveness and the practicability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordos Basin is a typical cratonic petroliferous basin with 40 oil-gas bearing bed sets. It is featured as stable multicycle sedimentation, gentle formation, and less structures. The reservoir beds in Upper Paleozoic and Mesozoicare are mainly low density, low permeability, strong lateral change, and strong vertical heterogeneous. The well-known Loess Plateau in the southern area and Maowusu Desert, Kubuqi Desert and Ordos Grasslands in the northern area cover the basin, so seismic data acquisition in this area is very difficult and the data often takes on inadequate precision, strong interference, low signal-noise ratio, and low resolution. Because of the complicated condition of the surface and the underground, it is very difficult to distinguish the thin beds and study the land facies high-resolution lithologic sequence stratigraphy according to routine seismic profile. Therefore, a method, which have clearly physical significance, based on advanced mathematical physics theory and algorithmic and can improve the precision of the detection on the thin sand-peat interbed configurations of land facies, is in demand to put forward.Generalized S Transform (GST) processing method provides a new method of phase space analysis for seismic data. Compared with wavelet transform, both of them have very good localization characteristics; however, directly related to the Fourier spectra, GST has clearer physical significance, moreover, GST adopts a technology to best approach seismic wavelets and transforms the seismic data into time-scale domain, and breaks through the limit of the fixed wavelet in S transform, so GST has extensive adaptability. Based on tracing the development of the ideas and theories from wavelet transform, S transform to GST, we studied how to improve the precision of the detection on the thin stratum by GST.Noise has strong influence on sequence detecting in GST, especially in the low signal-noise ratio data. We studied the distribution rule of colored noise in GST domain, and proposed a technology to distinguish the signal and noise in GST domain. We discussed two types of noises: white noise and red noise, in which noise satisfy statistical autoregression model. For these two model, the noise-signal detection technology based on GST all get good result. It proved that the GST domain noise-signal detection technology could be used to real seismic data, and could effectively avoid noise influence on seismic sequence detecting.On the seismic profile after GST processing, high amplitude energy intensive zone, schollen, strip and lentoid dead zone and disarray zone maybe represent specifically geologic meanings according to given geologic background. Using seismic sequence detection profile and combining other seismic interpretation technologies, we can elaborate depict the shape of palaeo-geomorphology, effectively estimate sand stretch, distinguish sedimentary facies, determine target area, and directly guide oil-gas exploration.In the lateral reservoir prediction in XF oilfield of Ordos Basin, it played very important role in the estimation of sand stretch that the study of palaeo-geomorphology of Triassic System and the partition of inner sequence of the stratum group. According to the high-resolution seismic profile after GST processing, we pointed out that the C8 Member of Yanchang Formation in DZ area and C8 Member in BM area are the same deposit. It provided the foundation for getting 430 million tons predicting reserves and unite building 3 million tons off-take potential.In tackling key problem study for SLG gas-field, according to the high-resolution seismic sequence profile, we determined that the deposit direction of H8 member is approximately N-S or NNE-SS W. Using the seismic sequence profile, combining with layer-level profile, we can interpret the shape of entrenched stream. The sunken lenticle indicates the high-energy stream channel, which has stronger hydropower. By this way we drew out three high-energy stream channels' outline, and determined the target areas for exploitation. Finding high-energy braided river by high-resolution sequence processing is the key technology in SLG area.In ZZ area, we studied the distribution of the main reservoir bed-S23, which is shallow delta thin sand bed, by GST processing. From the seismic sequence profile, we discovered that the schollen thick sand beds are only local distributed, and most of them are distributary channel sand and distributary bar deposit. Then we determined that the S23 sand deposit direction is NW-SE in west, N-S in central and NE-SW in east. The high detecting seismic sequence interpretation profiles have been tested by 14 wells, 2 wells mismatch and the coincidence rate is 85.7%. Based on the profiles we suggested 3 predicted wells, one well (Yu54) completed and the other two is still drilling. The completed on Is coincident with the forecastThe paper testified that GST is a effective technology to get high- resolution seismic sequence profile, compartmentalize deposit microfacies, confirm strike direction of sandstone and make sure of the distribution range of oil-gas bearing sandstone, and is the gordian technique for the exploration of lithologic gas-oil pool in complicated areas.