963 resultados para Variation (Biology)--Ontario--Gull Island.
Resumo:
In coastal waters, Antarctic rhodophytes are exposed to harsh environmental conditions throughout the year, like low water temperatures ranging from -1.8°C to 2°C and high light during the summer season. Photosynthetic performance under these conditions may be affected by slowed down enzymatic reactions and the increased generation of reactive oxygen species. The consequence might be a chronic photoinhibition of photosynthetic primary reactions related to increased fragmentation of the D1 reaction centre protein in photosystem II. It is hypothesized that changes in lipid composition of biomembranes may represent an adaptive trait to maintain D1 turnover in response to temperature variation. The interactive effects of high light and low temperature were studied on an endemic Antarctic red alga, Palmaria decipiens, sampled from two shore levels, intertidal and subtidal, and exposed to mesocosm experiments using two levels of natural solar radiation and two different temperature regimes (2-5°C and 5-10°C). During the experimental period of 23 days, maximum quantum yield of photosynthesis decreased in all treatments, with the intertidal specimens exposed at 5-10°C being most affected. On the pigment level, a decreasing ratio of phycobiliproteins to chlorophyll a was found in all treatments. A pronounced decrease in D1 protein concentration occurred in subtidal specimens exposed at 2-5°C. Marked changes in lipid composition, i.e. the ratio of saturated to unsaturated fatty acids, indicated an effective response of specimens to temperature change. Results provide new insights into mechanisms of stress adaptation in this key species of shallow Antarctic benthic communities.
Resumo:
Copepods were sampled at two sampling sites off the island of São Vicente, Cape Verde Archipelago, in spring (March/April) and early summer (May/June) of 2010. The two sampling sites were located in Mindelo Bay (16.90N, 25.01W; bottom depth 22 m) and around 8 km off the town of São Pedro (16.77N, 25.12W; bottom depth 800 m). Samples were collected on board the local fishing vessel 'Sinagoga' using a WP-2 net (Hydrobios, 0.26 m**2 mouth opening, 200 µm mesh size). The net was either applied as a driftnet, drifting for 10 min in 22 to 0 m depth below the surface, or it was towed vertically with a towing speed of 0.5 m/s**1. For stratified sampling, the net was deployed in repetitive hauls from 560 to 210 m, from 210 to 80 m, and from 80 to 0 m in March/April and from 600 to 300 m, 300 to 100 m, and 100 to 0 m in May/June. Additional depth-integrated hauls were conducted from 600-0 m or 500-0 m during both field campaigns. Respiration rates of epi- and mesopelagic calanoid copepods were measured in the land-based laboratory at the Instituto Nacional de Desenvolvimento das Pescas (INDP) in Mindelo. Oxygen consumption was measured non-invasively by optode respirometry at three different ambient temperatures (13, 18, and 23°C) with a 10-channel oxygen respirometer (Oxy-10 Mini, PreSens Precision Sensing GmbH, Regensburg, Germany). All experiments were run in darkness in temperature-controlled incubators (LMS Cooled Incubator Series 1A, Model 280) equipped with water baths to ensure constant temperatures throughout the experiments, tolerating a variation of ±1°C.
Resumo:
Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.