980 resultados para VI BIAU Lisboa 2008
Resumo:
◾PICES Science in 2007 (pdf, 0.1 Mb) ◾2007 Wooster Award (pdf, 0.1 Mb) ◾FUTURE - A milestone reached but our task is not done (pdf, < 0.1 Mb) ◾International symposium on "Reproductive and Recruitment Processes of Exploited Marine Fish Stocks" (pdf, 0.1 Mb) ◾Recent results of the micronekton sampling inter-calibration experiment (pdf, 0.1 Mb) ◾2007 PICES workshop on "Measuring and monitoring primary productivity in the North Pacific" (pdf, 0.1 Mb) ◾2007 Harmful Algal Bloom Section annual workshop events (pdf, 0.1 Mb) ◾A global approach for recovery and sustainability of marine resources in Large Marine Ecosystems (pdf, 0.3 Mb) ◾Highlights of the PICES Sixteenth Annual Meeting (pdf, 0.4 Mb) ◾Ocean acidification of the North Pacific Ocean (pdf, 0.3 Mb) ◾Workshop on NE Pacific Coastal Ecosystems (2008 Call for Salmon Survival Forecasts) (pdf, 0.1 Mb) ◾The state of the western North Pacific in the first half of 2007 (pdf, 0.4 Mb) ◾PICES Calendar (pdf, 0.4 Mb) ◾The Bering Sea: Current status and recent events (pdf, 0.3 Mb) ◾PICES Interns (pdf, 0.3 Mb) ◾Recent trends in waters of the subarctic NE Pacific (pdf, 0.3 Mb) ◾Election results at PICES (pdf, 0.2 Mb) ◾A new PICES award for monitoring and data management activities (pdf, < 0.1 Mb)
Resumo:
O Sistema de Secreção do Tipo VI (SST6), o mais recente maquinário de secreção descrito em bactérias Gram-negativas, é amplamente distribuído entre as diversas espécies deste grupo de microrganismos. Esse aparato de secreção é capaz de injetar efetores proteicos em células alvo, eucarióticas e procarióticas. Estudos sobre o papel do SST6 na virulência microbiana revelaram que este sistema secretório participa ativamente do estabelecimento de infecções, contribuindo para a sobrevivência das bactérias no interior de fagócitos. O genoma da cepa PAO1 de Pseudomonas aeruginosa apresenta três loci que codificam aparatos de SST6, denominados de H1-SST6, H2-SST6 e H3-SST6, Porém, pouco se sabe sobre a participação do SST6 na patogênese de infecções por P. aeruginosa. Assim, o presente estudo investigou o papel de H1-SST6, H2-SST6 e H3-SST6 durante a infecção pulmonar aguda de camundongos. Para isso, camundongos C57/BL6 foram infectados com diferentes doses de bactérias da cepa selvagem PAO1 ou das cepas mutantes PAO1∆H1, PAO1∆H2, PAO1∆H3 ou PAO1∆H1∆H2∆H3. Após 24 horas, os lavados broncoalveolares (LBAs) de animais controle e infectados foram recuperados para a contagem de leucócitos totais e polimorfonucleares e para a quantificação, por ELISA, da quimiocina para neutrófilos, KC, e das citocinas pró-inflamatórias IL-1β e TNF-α. Em outros experimentos, os pulmões, fígados, baços e rins dos animais foram macerados para a pesquisa da carga bacteriana e da disseminação sistêmica das bactérias. A citotoxicidade do SST6 foi determinada, in vitro, em neutrófilos humanos, pela marcação com iodeto de propídeo (PI) e anexina-V seguida da análise em citometria de fluxo. Os resultados mostraram que a inativação dos três SST6 reduziu significativamente a concentração de neutrófilos nos LBAs quando os animais foram infectados com 107 Unidades Formadoras de Colônias de P. aeruginosa. Nesta dose, foi observado que as medianas do número de bactérias detectadas nos animais infectados com as mutantes no SST6 foram menores do que as detectadas nos animais infectados com a cepa parental PAO1. As mutações no SST6 não afetaram a disseminação sistêmica da bactéria. A pesquisa da secreção de citocinas pró-inflamatórias mostrou que, embora tenha sido observada uma redução nas medianas das concentrações de TNF-α nos LBAs de camundongos infectados com a cepa PAO1∆H1∆H2∆H3, em relação aos LBAs de camundongos infectados com a cepa parental, essa diferença não foi significativa. Como a pesquisa de IL-1β e KC não contribuiu para a elucidação dos mecanismos envolvidos na redução da concentração de neutrófilos nos LBAs dos camundongos infectados pela cepa tripla mutante, foi pesquisado o possível efeito do SST6 na morte de neutrófilos humanos. Os resultados mostraram que não houve diferenças significativas quando as diferentes amostras de células infectadas foram comparedas entre si. Em conclusão, os resultados do presente estudo mostraram que o SST6 pode interferir na resposta de neutrófilos durante a pneumonia aguda, mas estudos adicionais são necessários para determinar o papel deste mecanismo de secreção na patogênese de P. aeruginosa.
Resumo:
分子系统发育分析的主要任务包括:(1)帮助建立生命之树(tree of life);(2)追踪基因和基因家族(gene family)的起源和进化, 以获知基因在进化过程中的功能分化和伴随发生的重要分子事件(key molecular events)和形态性状的关键创新(key innovation)。这两个方面在本研究中都有所涉及。对于前者,选用植物线粒体matR基因重建被子植物蔷薇类群的系统发育关系;对于后者,则以SET基因超家族为例,探讨其在真核生物中的进化分类以及与功能多样性的关系。 I 蔷薇类的分子系统学 蔷薇类(rosids)是基于分子数据建立的被子植物的主要分支之一,包含13个目,大约三分之一的被子植物物种。两个主要蔷薇类内部分支是豆类fabids(包含7个目)和锦葵类malvids(包含3个目)。然而,这两个分支内部,以及这两个分支与蔷薇类基部类群,包括牻牛儿苗目(Geraniales)、桃金娘目(Myrtales)和流苏子目(Crossosomatales)之间的关系大多是不清楚的。本研究中,我们选取174个物种来代表72个蔷薇类(rosids)的科,利用两个数据集,即线粒体matR单基因数据集和包括线粒体matR基因、两个质体基因(rbcL、 atpB)和一个核基因(18S rDNA) 的4基因数据集,重建蔷薇类在科以上分类阶元水平的系统发育关系。同时,还对线粒体matR基因的进化特征和用于大尺度系统发育分析的适合度和潜力进行了评价。 线粒体matR单基因数据支持malvids和大多数蔷薇类目的单系性质,然而,豆类(fabids)成员没有形成一个分支,其COM亚支,包括卫矛目(Celastrales)、酢浆草目(Oxalidales)、金虎尾目(Malpighiales)和蒜树科(Huaceae),分辨为锦葵类(malvids)的姐妹群。这个关系在最近根据花结构特征曾被提出过,但从未在之前的分子系统发育分析中得到分辨。4基因数据集支持首先是牻牛儿苗目(Geraniales),接着是桃金娘目(Myrtales)作为蔷薇类(rosids)的最基部的分支;流苏子目(Crossosomatales)是锦葵类(malvids)姐妹群,以及蔷薇类(rosids)的核心部分包括豆类(fabids),锦葵类(malvids)和流苏子目(Crossosomatales)。线粒体matR基因的进化特征分析显示,与两个叶绿体基因(rbcL 和atpB)比较,同义替代速率约是它们的1/4,而非同义替代速率接近于自身的同义替代速率,表明matR 基因具有松弛的选择压力。线粒体matR基因相对慢速的进化使非同源相似(homoplasious)突变减少,提高了系统发育信息的质量,同时,松弛的选择压力使非同义替代数量增加,弥补了慢速进化导致的系统发育信息数量不足的缺陷,这两个方面的结合使线粒体matR基因非常适用于被子植物在科以上水平的系统发育研究。 II SET基因超家族的系统发育基因组学分析 SET基因超家族基因编码含有SET结构域的蛋白,在真核生物中,SET-domain蛋白一般是多结构域(multi-domain)的。SET-domain蛋白具有对组蛋白H3和H4的N末端尾部进行赖氨酸残基甲基化修饰的酶活性;从异染色质形成到基因转录,甲基化的组蛋白广泛影响染色质水平的基因调控。依据SET结构域一级序列的相似性和结构域组织(domain architecture)特征,目前,SET-domain基因超家族被划分为4-7个家族。由于这些划分或者使用动物或者使用植物SET基因,只有少数其它类群的物种加入分析,因此这样的划分可能是不完整的。本研究采用系统发育基 因组学方法(phylogenomic approach),在真核生物范围内广泛取样,期望获得相对完整的SET-domain基因家族的 进化分类方案,在此基础上加深理解SET-domain基因的进化机制和功能多样性。 在提取了17个物种,代表5个真核超群的SET蛋白序列基础上,系统发育分析结合“结构域组织特征”鉴别了9个SET基因家族,其中一个是新的SET基因家族。以前的SET8和Class VI家族,及SMYD和SUV4-20家族分别合并为一个家族。大部分家族在进化过程中发生了2次以上的基因重复事件,通过获得不同的结构域产生具有不同功能的新基因。一个SET基因家族在进化过程中推测发生了从脊椎动物祖先向盘基网柄菌(Dictyostelium discoideum)的水平基因转移。
Resumo:
In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.
Resumo:
NOAA’s Coral Reef Conservation program (CRCP) develops coral reef management priorities by bringing together various partners to better understand threats to coral reef ecosystems with the goal of conserving, protecting and restoring these resources. Place-based and ecosystem-based management approaches employed by CRCP require that spatially explicit information about benthic habitats and fish utilization are available to characterize coral reef ecosystems and set conservation priorities. To accomplish this, seafloor habitat mapping of coral reefs around the U.S. Virgin Islands (USVI) and Puerto Rico has been ongoing since 2004. In 2008, fishery acoustics surveys were added to NOAA survey missions in the USVI and Puerto Rico to assess fish distribution and abundance in relation to benthic habitats in high priority conservation areas. NOAA’s National Centers for Coastal Ocean Science (NCCOS) have developed fisheries acoustics survey capabilities onboard the NOAA ship Nancy Foster to complement the CRCP seafloor habitat mapping effort spearheaded by the Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB). The integration of these activities has evolved on the Nancy Foster over the three years summarized in this report. A strategy for improved operations and products has emerged over that time. Not only has the concurrent operation of multibeam and fisheries acoustics surveys been beneficial in terms of optimizing ship time and resources, this joint effort has advanced an integrated approach to characterizing bottom and mid-water habitats and the fishes associated with them. CCMA conducts multibeam surveys to systematically map and characterize coral reef ecosystems, resulting in products such as high resolution bathymetric maps, backscatter information, and benthic habitat classification maps. These products focus on benthic features and live bottom habitats associated with them. NCCOS Centers (the Center for Coastal Fisheries and Habitat Research and the Center for Coastal Environmental Health and Biomolecular Research) characterize coral reef ecosystems by using fisheries acoustics methods to capture biological information through the entire water column. Spatially-explicit information on marine resources derived from fisheries acoustics surveys, such as maps of fish density, supports marine spatial planning strategies and decision making by providing a biological metric for evaluating coral reef ecosystems and assessing impacts from pollution, fishing pressure, and climate change. Data from fisheries acoustics surveys address management needs by providing a measure of biomass in management areas, detecting spatial and temporal responses in distribution relative to natural and anthropogenic impacts, and identifying hotspots that support high fish abundance or fish aggregations. Fisheries acoustics surveys conducted alongside multibeam mapping efforts inherently couple water column data with information on benthic habitats and provide information on the heterogeneity of both benthic habitats and biota in the water column. Building on this information serves to inform resource managers regarding how fishes are organized around habitat structure and the scale at which these relationships are important. Where resource managers require place-based assessments regarding the location of critical habitats along with high abundances of fish, concurrent multibeam and fisheries acoustics surveys serve as an important tool for characterizing and prioritizing coral reef ecosystems. This report summarizes the evolution of fisheries acoustics surveys onboard the NOAA ship Nancy Foster from 2008 to 2010, in conjunction with multibeam data collection, aimed at characterizing benthic and mid-water habitats in high priority conservation areas around the USVI and Puerto Rico. It also serves as a resource for the continued development of consistent data products derived from acoustic surveys. By focusing on the activities of 2010, this report highlights the progress made to date and illustrates the potential application of fisheries data derived from acoustic surveys to the management of coral reef ecosystems.
Resumo:
In the past decade, increased awareness regarding the declining condition of U.S. coral reefs has prompted various actions by governmental and non-governmental organizations. Presidential Executive Order 13089 created the U.S. Coral Reef Task Force (USCRTF) in 1998 to coordinate federal and state/territorial activities (Clinton, 1998), and the Coral Reef Conservation Act of 2000 provided Congressional funding for activities to conserve these important ecosystems, including mapping, monitoring and assessment projects carried out through the support of NOAA’s CRCP. Numerous collaborations forged among federal agencies and state, local, non-governmental, academic and private partners now support a variety of monitoring activities. This report shares the results of many of these monitoring activities, relying heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data where possible. The success of this effort can be attributed to the dedication of over 270 report contributors who comprised the expert writing teams in the jurisdictions and contributed to the National Level Activities and National Summary chapters. The scope and content of this report are the result of their dedication to this considerable collaborative effort. Ultimately, the goal of this report is to answer the difficult but vital question: what is the condition of U.S. coral reef ecosystems? The report attempts to base a response on the best available science emerging from coral reef ecosystem monitoring programs in 15 jurisdictions across the country. However, few monitoring programs have been in place for longer than a decade, and many have been initiated only within the past two to five years. A few jurisdictions are just beginning to implement monitoring programs and face challenges stemming from a lack of basic habitat maps and other ecosystem data in addition to adequate training, capacity building, and technical support. There is also a general paucity of historical data describing the condition of ecosystem resources before major human impacts occurred, which limits any attempt to present the current conditions within an historical context and contributes to the phenomenon of shifting baselines (Jackson, 1997; Jackson et al., 2001; Pandolfi et al., 2005).
Resumo:
The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.
Resumo:
On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.
Resumo:
Contiene los trabajos presentados, el programa científico y el perfil de algunas instituciones cubanas. Contains the papers presented, the scientific program and the profile of some Cuban institutions.