908 resultados para Urban transportation - Environmental aspects
Resumo:
This work aimed to study the characteristics of the fibres of the species Bactris setosa ('tucum') used by close-knit social groups, located in Sorocaba - Sao Paulo - Brazil, in basket-making techniques, for possible applications in textile activity. Optical microscopy (NBR 13 538:1995) and Tensile Properties (ASTM D 3 822-2001) were used to assess properties such as the fibre structre, linear density, breaking force, elongation at break and breaking tenacity of each species. Bactris setosa showed a longitudinal view similar to that of sisal; an average linear density of 41.2 tex, a tenacity average of 11.96 cN/tex, closer to fiberglass, and an elongation ranging between 1.35 and 3.87%. It is important to clarify the delicacy and detail of the tests, and from this we highlight the importance of carrying out these studies, based on which science and technology must be linked with socio-environmental aspects.
Resumo:
The identification of Leptospira clinical isolates through genotyping and serotyping, besides the recognition of its reservoirs, are important tools for understanding the epidemiology of leptospirosis, and they are also keys for identifying new species and serovars. Fourteen clinical isolates from animals were characterized by means of single enzyme amplified length polymorphism, variable number of tandem repeat analysis, pulsed field gel electrophoresis, and serotyping. All isolates were identified as Leptospira interrogans, serovar Canicola. Infections by this serovar occur in urban regions, where dogs represent the main maintenance hosts, whereas bovine and swine may act as reservoirs of serovar Canicola in rural areas. Both urban and rural aspects of leptospirosis, and the role of domestic animals as maintenance hosts, cannot be neglected in developing and developed countries.
Resumo:
Given the social and territorial features described in feral cats, it is commonly assumed that life in multi-cat households is stressful for domestic cats and suggested that cats kept as single pets are likely to have better welfare. On the other hand, it has been hypothesized that under high densities cats can organize themselves socially thus preventing stress when spatial dispersion is unavailable. This study was aimed at comparing the general arousal underpinning emotional distress in single housed cats and in cats from multi-cat households (2 and 3–4 cats) on the basis of fecal glucocorticoid metabolites (GCM) measured via enzyme immunoassay (EIA). GCM did not significantly vary as a function of living style (single, double or group-housing); highly stressed individuals were equally likely in the three groups. Young cats in multi-cat households had lower GCM, and overall cats that tolerate (as opposed to dislike) petting by the owners tended to have higher GCM levels. Other environmental aspects within cat houses (e.g. relationship with humans, resource availability) may play a more important role in day to day feline arousal levels than the number of cats per se
Resumo:
Environmental Management includes many components, among which we can include Environmental Management Systems (EMS), Environmental Reporting and Analysis, Environmental Information Systems and Environmental Communication. In this work two applications are presented: the developement and implementation of an Environmental Management System in local administrations, according to the European scheme "EMAS", and the analysis of a territorial energy system through scenario building and environmental sustainability assessment. Both applications are linked by the same objective, which is the quest for more scientifically sound elements; in fact, both EMS and energy planning are oftec carachterized by localism and poor comparability. Emergy synthesis, proposed by ecologist H.T. Odum and described in his book "Environmental Accounting: Emergy and Environmental Decision Making" (1996) has been chosen and applied as an environmental evaluation tool, in order complete the analysis with an assessment of the "global value" of goods and processes. In particular, eMergy syntesis has been applied in order to improve the evaluation of the significance of environmental aspects in an EMS, and in order to evaluate the environmental performance of three scenarios of future evolution of the energy system. Regarding EMS, in this work an application of an EMS together with the CLEAR methodology for environmental accounting is discussed, in order to improve the identification of the environmental aspects; data regarding environmental aspects and significant ones for 4 local authorities are also presented, together with a preliminary proposal for the integration of the assessment of the significance of environmental aspects with eMergy synthesis. Regarding the analysis of an energy system, in this work the carachterization of the current situation is presented together with the overall energy balance and the evaluation of the emissions of greenhouse gases; moreover, three scenarios of future evolution are described and discussed. The scenarios have been realized with the support of the LEAP software ("Long Term Energy Alternatives Planning System" by SEI - "Stockholm Environment Institute"). Finally, the eMergy synthesis of the current situation and of the three scenarios is shown.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
Cotton is a leading agricultural non-food commodity associated with soil degradation, water pollution and pesticide poisoning due to high levels of agrochemical inputs. Organic farming is often promoted as a means of addressing the economic, environmental and health risks of conventional cotton production, and it is slowly gaining ground in the global cotton market. Organic and fair trade cotton are widely seen as opportunities for smallholder farmers to improve their livelihoods thanks to higher returns, lower input costs and fewer risks. Despite an increasing number of studies comparing the profitability of organic and non-organic farming systems in developing and industrialized countries, little has been published on organic farming in Central Asia. The aim of this article is to describe the economic performance and perceived social and environmental impacts of organic cotton in southern Kyrgyzstan, drawing on a comparative field study conducted by the author in 2009. In addition to economic and environmental aspects, the study investigated farmers’ motivations toward and assessment of conversion to organic farming. Cotton yields on organic farms were found to be 10% lower, while input costs per unit were 42% lower; as a result, organic farmers’ cotton revenues were 20% higher. Due to lower input costs as well as organic and fair trade price premiums, the average gross margin from organic cotton was 27% higher. In addition to direct economic benefits, organic farmers enjoy other benefits, such as easy access to credit on favorable terms, provision of uncontaminated cottonseed cooking oil and cottonseed cake as animal feed, and marketing support as well as extension and training services provided by newly established organic service providers. The majority of organic farmers perceive improved soil quality, improved health conditions, and positively assess their initial decision to convert to organic farming. The major disadvantage of organic farming is the high manual labor input required. In the study area, where manual farm work is mainly women's work and male labor migration is widespread, women are most affected by this negative aspect of organic farming. Altogether, the results suggest that, despite the inconvenience of a higher workload, the advantages of organic farming outweigh its disadvantages and that conversion to organic farming improves the livelihoods of small-scale farmers.
Resumo:
The project deals with problems of marginal rural regions in the period of transformation in Slovenia and the Czech Republic. The course of the transformation, its impact, related border problems and environmental aspects were studied in seven model regions of the two countries, using geographical, cartographic, sociological, historical and remote-sensing methods. The opinions of both the local populations and the local authorities were also taken into account. The most important problems observed included the deepening of marginality, the worsening situation in the labour market, structural demographic degradation of the most marginal settlements and a lack of development programmes. In the Czech Republic the state had no effective regional policy up to the time of the research. Possibilities for future prosperity include exploitation of human and other local resources, the elaboration of local and regional programmes capable of gaining financial support and the utilisation of tranquility and the positive environmental situation. It is the local people who usually represent the main wealth of marginal regions and care for them is the task of the local authorities.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Vietnam has developed rapidly over the past 15 years. However, progress was not uniformly distributed across the country. Availability, adequate visualization and analysis of spatially explicit data on socio-economic and environmental aspects can support both research and policy towards sustainable development. Applying appropriate mapping techniques allows gleaning important information from tabular socio-economic data. Spatial analysis of socio-economic phenomena can yield insights into locally-specifi c patterns and processes that cannot be generated by non-spatial applications. This paper presents techniques and applications that develop and analyze spatially highly disaggregated socioeconomic datasets. A number of examples show how such information can support informed decisionmaking and research in Vietnam.
Resumo:
Since product take-back is mandated in Europe, and has effects for producers worldwide including the U.S., designing efficient forward and reverse supply chain networks is becoming essential for business viability. Centralizing production facilities may reduce costs but perhaps not environmental impacts. Decentralizing a supply chain may reduce transportation environmental impacts but increase capital costs. Facility location strategies of centralization or decentralization are tested for companies with supply chains that both take back and manufacture products. Decentralized and centralized production systems have different effects on the environment, industry and the economy. Decentralized production systems cluster suppliers within the geographical market region that the system serves. Centralized production systems have many suppliers spread out that meet all market demand. The point of this research is to help further the understanding of company decision-makers about impacts to the environment and costs when choosing a decentralized or centralized supply chain organizational strategy. This research explores; what degree of centralization for a supply chain makes the most financial and environmental sense for siting facilities; and which factories are in the best location to handle the financial and environmental impacts of particular processing steps needed for product manufacture. This research considered two examples of facility location for supply chains when products are taken back; the theoretical case involved shoe resoling and a real world case study considered the location of operations for a company that reclaims multiple products for use as material inputs. For the theoretical example a centralized strategy to facility location was optimal: whereas for the case study a decentralized strategy to facility location was best. In conclusion, it is not possible to say that a centralized or decentralized strategy to facility location is in general best for a company that takes back products. Each company’s specific concerns, needs, and supply chain details will determine which degree of centralization creates the optimal strategy for siting their facilities.
Resumo:
Das Projekt „Analyse und Quantifizierung der Umweltauswirkungen von Fördermitteln in der Intralogistik“ hat sich zum Ziel gesetzt, die Umweltaspekte verschiedener Fördermittel während des gesamten Lebenszyklus zu analysieren, zu quantifizieren und zu bewerten. Dazu werden für die Produktgruppen Flurförderzeuge, Krane & Hebezeuge und Lagertechnik Methoden entwickelt, um die Umweltaspekte, die von diesen Geräten bzw. Systemen zu erwarten sind, einer genaueren Untersuchung zu unterziehen.
Resumo:
Ziel der ganzheitlichen Betrachtung der Umweltaspekte von Fördermitteln im Lager- und Kommissi-oniervorgang ist über den vollständigen Lebenszyklus Aussagen über Umweltauswirkungen zu treffen. Speziell für die Nutzungsphase werden am IFL analytische Energiebedarfsmodelle für die unterschiedlichen Fördermittel entwickelt. Deren Potential besteht v. a. darin, den aktuellen Stand heutiger Energieeffizienzmaßnahmen abzubilden und das Energieeinsparpotenzial zukünftiger Energiesparmaßnahmen abzuleiten.
Resumo:
BACKGROUND AND METHODS We conducted a focus group analysis with students and surgeons on factors which influence medical school students' education in the operating room (OR). The interviews were analyzed using grounded theory. RESULTS The analysis resulted in 18 detailed and easily applyable themes, which were grouped into the four categories: "Students' preparation and organizational aspects", "Learning objectives", "Educational strategies for the teacher", and "Social-environmental aspects". CONCLUSION By including students and surgeons, we were able to extend existing knowledge and enable better understanding of factors influencing teaching in the OR.