999 resultados para Temperature dependencies
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.
Resumo:
The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.
Resumo:
The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.
Resumo:
We applied our previous theory of high temperature superconductivity to Bi and Tl compounds in this paper. The theory involves the role of electron pairs in the spin singlet of species Xequal-or-greater, slanted (Bi3+ (6S2), Tl(6S2) etc.) and their virtual excited state X0 (Bi5+ (6s0), Tl3+ (6s0), etc.) in the pairing interaction of quasiholes. Bi and Tl species provide additional channels of kind (Xequal-or-greater, slanted left angle bracket X0) owing to the charge fluctuations. We treated the two states of these species like a two-level Bose system. We used the pseudospin formalism to calculate the expression for the critical temperature in this paper. We also calculated numerically the value of Tc for Bi and Tl compounds and found a good agreement between theory and experiment.
Resumo:
High-temperature superconductivity constitutes the most sensational discovery of recent times. Since these new superconductors are complex metal oxides, chemistry has had a big role to play in the investigations. For the first time, stoichiometry, structure, bonding, and such chemical factors have formed central themes in superconductivity, an area traditionally dominated by physicists. These oxide superconductors have given a big boost to solid-state chemistry.
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
Like the metal and semiconductor nanoparticles, the melting temperature of free inert-gas nanoparticles decreases with decreasing size. The variation is linear with the inverse of the particle size for large nanoparticles and deviates from the linearity for small nanoparticles. The decrease in the melting temperature is slower for free nanoparticles with non-wetting surfaces, while the decrease is faster for nanoparticles with wetting surfaces. Though the depression of the melting temperature has been reported for inert-gas nanoparticles in porous glasses, superheating has also been observed when the nanoparticles are embedded in some matrices. By using a simple classical approach, the influence of size, geometry and the matrix on the melting temperature of nanoparticles is understood quantitatively and shown to be applicable for other materials. It is also shown that the classical approach can be applied to understand the size-dependent freezing temperature of nanoparticles.
Resumo:
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2