946 resultados para Statistics, Nonparametric
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.
Resumo:
Using a scaling assumption, we propose a phenomenological model aimed to describe the joint probability distribution of two magnitudes A and T characterizing the spatial and temporal scales of a set of avalanches. The model also describes the correlation function of a sequence of such avalanches. As an example we study the joint distribution of amplitudes and durations of the acoustic emission signals observed in martensitic transformations [Vives et al., preceding paper, Phys. Rev. B 52, 12 644 (1995)].
Resumo:
Quantile functions are efficient and equivalent alternatives to distribution functions in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran, 2009). Motivated by this, in the present paper, we introduce a quantile based Shannon entropy function. We also introduce residual entropy function in the quantile setup and study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the residual quantile entropy function determines the quantile density function uniquely through a simple relationship. The measure is used to define two nonparametric classes of distributions
Resumo:
Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions
Resumo:
Humans distinguish materials such as metal, plastic, and paper effortlessly at a glance. Traditional computer vision systems cannot solve this problem at all. Recognizing surface reflectance properties from a single photograph is difficult because the observed image depends heavily on the amount of light incident from every direction. A mirrored sphere, for example, produces a different image in every environment. To make matters worse, two surfaces with different reflectance properties could produce identical images. The mirrored sphere simply reflects its surroundings, so in the right artificial setting, it could mimic the appearance of a matte ping-pong ball. Yet, humans possess an intuitive sense of what materials typically "look like" in the real world. This thesis develops computational algorithms with a similar ability to recognize reflectance properties from photographs under unknown, real-world illumination conditions. Real-world illumination is complex, with light typically incident on a surface from every direction. We find, however, that real-world illumination patterns are not arbitrary. They exhibit highly predictable spatial structure, which we describe largely in the wavelet domain. Although they differ in several respects from the typical photographs, illumination patterns share much of the regularity described in the natural image statistics literature. These properties of real-world illumination lead to predictable image statistics for a surface with given reflectance properties. We construct a system that classifies a surface according to its reflectance from a single photograph under unknown illuminination. Our algorithm learns relationships between surface reflectance and certain statistics computed from the observed image. Like the human visual system, we solve the otherwise underconstrained inverse problem of reflectance estimation by taking advantage of the statistical regularity of illumination. For surfaces with homogeneous reflectance properties and known geometry, our system rivals human performance.
Resumo:
We propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
A pesar del amplio uso de la resonancia magnética en la esclerosis múltiple no se ha logrado una adecuada correlación clínico-imagenológica en esta enfermedad. Objetivo: Determinar la correlación del volumen normalizado de sustancia gris y del volumen de lesiones hipointensas en T1 obtenidos a partir de la resonancia magnética cerebral con la escala de discapacidad extendida en pacientes con diagnóstico de esclerosis múltiple. Materiales y métodos: Estudio retrospectivo en pacientes con diagnóstico de esclerosis múltiple de la Fundación Cardioinfantil. Se obtuvieron los resultados de la escala de discapacidad expandida así como análisis cuantitativo de las imágenes correspondientes de resonancia magnética por medio de la herramienta SIENA. Se cuantificaron el volumen del parénquima cerebral, sustancia gris, sustancia blanca y volumen de lesiones hipointensas en T1. Posteriormente, se relacionaron estos resultados con la escala de discapacidad extendida de Kurtzke previamente obtenida. Para el análisis estadístico se emplearon el test correlación de Spearman y t de Student y Hotelling. Resultados: Se incluyeron 58 pacientes, encontrándose correlaciones estadísticamente significativas entre la escala de discapacidad extendida y volumen de parénquima cerebral, volumen de sustancia gris y volumen de lesiones hipointensas en T1; de 0.384, 0.386 y 0.39. No se encontró una relación entre el volumen de sustancia blanca y la escala de discapacidad. Conclusiones: Existe una correlación clínico-imagenológica moderada en la esclerosis múltiple. La cuantificación de los parámetros propuestos en este estudio podría ser utilizada como herramienta en el seguimiento de la enfermedad y monitorización de nuevos tratamientos.
Resumo:
What test for your data? SPSS Statistics Coach can help