962 resultados para Spherical trigonometry.
Resumo:
Contact lenses are a common method for the correction of refractive errors of the eye. While there have been significant advancements in contact lens designs and materials over the past few decades, the lenses still represent a foreign object in the ocular environment and may lead to physiological as well as mechanical effects on the eye. When contact lenses are placed in the eye, the ocular anatomical structures behind and in front of the lenses are directly affected. This thesis presents a series of experiments that investigate the mechanical and physiological effects of the short-term use of contact lenses on anterior and posterior corneal topography, corneal thickness, the eyelids, tarsal conjunctiva and tear film surface quality. The experimental paradigm used in these studies was a repeated measures, cross-over study design where subjects wore various types of contact lenses on different days and the lenses were varied in one or more key parameters (e.g. material or design). Both, old and newer lens materials were investigated, soft and rigid lenses were used, high and low oxygen permeability materials were tested, toric and spherical lens designs were examined, high and low powers and small and large diameter lenses were used in the studies. To establish the natural variability in the ocular measurements used in the studies, each experiment also contained at least one “baseline” day where an identical measurement protocol was followed, with no contact lenses worn. In this way, changes associated with contact lens wear were considered in relation to those changes that occurred naturally during the 8 hour period of the experiment. In the first study, the regional distribution and magnitude of change in corneal thickness and topography was investigated in the anterior and posterior cornea after short-term use of soft contact lenses in 12 young adults using the Pentacam. Four different types of contact lenses (Silicone hydrogel/ Spherical/–3D, Silicone Hydrogel/Spherical/–7D, Silicone Hydrogel/Toric/–3D and HEMA/Toric/–3D) of different materials, designs and powers were worn for 8 hours each, on 4 different days. The natural diurnal changes in corneal thickness and curvature were measured on two separate days before any contact lens wear. Significant diurnal changes in corneal thickness and curvature within the duration of the study were observed and these were taken into consideration for calculating the contact lens induced corneal changes. Corneal thickness changed significantly with lens wear and the greatest corneal swelling was seen with the hydrogel (HEMA) toric lens with a noticeable regional swelling of the cornea beneath the stabilization zones, the thickest regions of the lenses. The anterior corneal surface generally showed a slight flattening with lens wear. All contact lenses resulted in central posterior corneal steepening, which correlated with the relative degree of corneal swelling. The corneal swelling induced by the silicone hydrogel contact lenses was typically less than the natural diurnal thinning of the cornea over this same period (i.e. net thinning). This highlights why it is important to consider the natural diurnal variations in corneal thickness observed from morning to afternoon to accurately interpret contact lens induced corneal swelling. In the second experiment, the relative influence of lenses of different rigidity (polymethyl methacrylate – PMMA, rigid gas permeable – RGP and silicone hydrogel – SiHy) and diameters (9.5, 10.5 and 14.0) on corneal thickness, topography, refractive power and wavefront error were investigated. Four different types of contact lenses (PMMA/9.5, RGP/9.5, RGP/10.5, SiHy/14.0), were worn by 14 young healthy adults for a period of 8 hours on 4 different days. There was a clear association between fluorescein fitting pattern characteristics (i.e. regions of minimum clearance in the fluorescein pattern) and the resulting corneal shape changes. PMMA lenses resulted in significant corneal swelling (more in the centre than periphery) along with anterior corneal steepening and posterior flattening. RGP lenses, on the other hand, caused less corneal swelling (more in the periphery than centre) along with opposite effects on corneal curvature, anterior corneal flattening and posterior steepening. RGP lenses also resulted in a clinically and statistically significant decrease in corneal refractive power (ranging from 0.99 to 0.01 D), large enough to affect vision and require adjustment in the lens power. Wavefront analysis also showed a significant increase in higher order aberrations after PMMA lens wear, which may partly explain previous reports of "spectacle blur" following PMMA lens wear. We further explored corneal curvature, thickness and refractive changes with back surface toric and spherical RGP lenses in a group of 6 subjects with toric corneas. The lenses were worn for 8 hours and measurements were taken before and after lens wear, as in previous experiments. Both lens types caused anterior corneal flattening and a decrease in corneal refractive power but the changes were greater with the spherical lens. The spherical lens also caused a significant decrease in WTR astigmatism (WRT astigmatism defined as major axis within 30 degrees of horizontal). Both the lenses caused slight posterior corneal steepening and corneal swelling, with a greater effect in the periphery compared to the central cornea. Eyelid position, lid-wiper and tarsal conjunctival staining were also measured in Experiment 2 after short-term use of the rigid and SiHy contact lenses. Digital photos of the external eyes were captured for lid position analysis. The lid-wiper region of the marginal conjunctiva was stained using fluorescein and lissamine green dyes and digital photos were graded by an independent masked observer. A grading scale was developed in order to describe the tarsal conjunctival staining. A significant decrease in the palpebral aperture height (blepharoptosis) was found after wearing of PMMA/9.5 and RGP/10.5 lenses. All three rigid contact lenses caused a significant increase in lid-wiper and tarsal staining after 8 hours of lens wear. There was also a significant diurnal increase in tarsal staining, even without contact lens wear. These findings highlight the need for better contact lens edge design to minimise the interactions between the lid and contact lens edge during blinking and more lubricious contact lens surfaces to reduce ocular surface micro-trauma due to friction and for. Tear film surface quality (TFSQ) was measured using a high-speed videokeratoscopy technique in Experiment 2. TFSQ was worse with all the lenses compared to baseline (PMMA/9.5, RGP/9.5, RGP/10.5, and SiHy/14) in the afternoon (after 8 hours) during normal and suppressed blinking conditions. The reduction in TFSQ was similar with all the contact lenses used, irrespective of their material and diameter. An unusual pattern of change in TFSQ in suppressed blinking conditions was also found. The TFSQ with contact lens was found to decrease until a certain time after which it improved to a value even better than the bare eye. This is likely to be due to the tear film drying completely over the surface of the contact lenses. The findings of this study also show that there is still a scope for improvement in contact lens materials in terms of better wettability and hydrophilicity in order to improve TFSQ and patient comfort. These experiments showed that a variety of changes can occur in the anterior eye as a result of the short-term use of a range of commonly used contact lens types. The greatest corneal changes occurred with lenses manufactured from older HEMA and PMMA lens materials, whereas modern SiHy and rigid gas permeable materials caused more subtle changes in corneal shape and thickness. All lenses caused signs of micro-trauma to the eyelid wiper and palpebral conjunctiva, although rigid lenses appeared to cause more significant changes. Tear film surface quality was also significantly reduced with all types of contact lenses. These short-term changes in the anterior eye are potential markers for further long term changes and the relative differences between lens types that we have identified provide an indication of areas of contact lens design and manufacture that warrant further development.
Resumo:
Purpose: We provide an account of the relationships between eye shape, retinal shape and peripheral refraction. Recent findings: We discuss how eye and retinal shapes may be described as conicoids, and we describe an axis and section reference system for determining shapes. Explanations are given of how patterns of retinal expansion during the development of myopia may contribute to changing patterns of peripheral refraction, and how pre-existing retinal shape might contribute to the development of myopia. Direct and indirect techniques for determining eye and retinal shape are described, and results are discussed. There is reasonable consistency in the literature of eye length increasing at a greater rate than height and width as the degree of myopia increases, so that eyes may be described as changing from oblate/spherical shapes to prolate shapes. However, one study indicates that the retina itself, while showing the same trend, remains oblate in shape for most eyes (discounting high myopia). Eye shape and retinal shape are not the same and merely describing an eye shape as being prolate or oblate is insufficient without some understanding of the parameters contributing to this; in myopia a prolate eye shape is likely to involve both a steepening retina near the posterior pole combined with a flattening (or a reduction in steepening compared with an emmetrope) away from the pole.
Resumo:
This study compared the corneal and total higher order aberrations between the fellow eyes in monocular amblyopia. Nineteen amblyopic subjects (8 refractive and 11 strabismic) (mean age 30 ± 11 years) were recruited. A range of biometric and optical measurements were collected from the amblyopic and non-amblyopic eye including; axial length, corneal topography and total higher order aberrations. For a sub-group of eleven non-presbyopic subjects (6 refractive and 5 strabismic amblyopes, mean age 29 ± 10 years) total higher order aberrations were also measured during accommodation (2.5 D stimuli). Amblyopic eyes were significantly shorter and more hyperopic compared to non-amblyopic eyes and the interocular difference in axial length correlated with both the magnitude of anisometropia and amblyopia (both p < 0.01). Significant differences in higher order aberrations were observed between fellow eyes, which varied with the type of amblyopia. Refractive amblyopes displayed higher levels of 4th order corneal aberrations C(4, 0)(spherical aberration), C(4, 2)(secondary astigmatism 90°) and C(4, −2)(secondary astigmatism along 45°) in the amblyopic eye compared to the non-amblyopic eye. Strabismic amblyopes exhibited significantly higher levels of C(3, 3)(trefoil) in the amblyopic eye for both corneal and total higher order aberrations. During accommodation, the amblyopic eye displayed a significantly greater lag of accommodation compared to the non-amblyopic eye, while the changes in higher order aberrations were similar in magnitude between fellow eyes. Asymmetric visual experience during development appears to be associated with asymmetries in higher order aberrations, in some cases proportional to the magnitude of anisometropia and dependent upon the amblyogenic factor.
Resumo:
Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.
Resumo:
Recent research has described the restructuring of particles upon exposure to organic vapours; however, as yet hypotheses able to explain this phenomenon are limited. In this study, a range of experiments were performed to explore different hypotheses related to carbonaceous particle restructuring upon exposure to organic and water vapours, such as: the effect of surface tension, the role of organics in flocculating primary particles, as well as the ability of vapours to “wet” the particle surface. The change in mobility diameter (dm) was investigated for a range carbonaceous particle types (diesel exhaust, petrol exhaust, cigarette smoke, candle smoke, particles generated in a heptane/toluene flame, and wood smoke particles) exposed to different organic (heptane, ethanol, and dimethyl sulfoxide/water (1:1 vol%) mixture) and water vapours. Particles were first size-selected and then bubbled through an impinger (bubbler) containing either an organic solvent or water, where particles trapped inside rising bubbles were exposed to saturated vapours of the solvent in the impinger. The size distribution of particles was simultaneously measured upstream and downstream from the impinger. A size-dependent reduction in dm was observed when bubbling diesel exhaust, particles generated in a heptane/toluene flame, and candle smoke particles through heptane, ethanol and a dimethyl sulfoxide/water (1:1 vol %) mixture. In addition, the size distributions of particles bubbled through an impinger were broader. Moreover, an increase of the geometric standard deviation (σ) of the size distributions of particles bubbled through an impinger was also found to be size-dependent. Size-dependent reduction in dm and an increase of σ indicate that particles undergo restructuring to a more compact form, which was confirmed by TEM analysis. However, bubbling of these particles through water did not result in a size-dependent reduction in dm, nor in an increase of σ. Cigarette smoke, petrol exhaust, and wood smoke particles did not result in any substantial change in dm, or σ, when bubbled through organic solvents or water. Therefore, size-dependent reduction in the dm upon bubbling through organic solvents was observed only for particles that had a fractal-like structure, whilst particles that were liquid or were assumed to be spherical did not exhibit any reduction in dm. Compaction of fractal-like particles was attributed to the ability of condensing vapours to efficiently wet the particles. Our results also show that the presence of an organic layer on the surface of fractal-like particles, or the surface tension of the condensed liquid do not influence the extent of compaction.
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.
Resumo:
This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.
Resumo:
PURPOSE: To examine the symmetry of corneal changes following near work in the fellow eyes of non-amblyopic myopic anisometropes. METHODS: Thirty-four non-amblyopic myopic anisometropes (minimum 1 D spherical equivalent anisometropia) were recruited. Corneal topography was measured with the Medmont E300 Videokeratoscope before and after a controlled near task. Subjects were positioned to minimise head movements and read continuous text on a computer monitor for 10 minutes at an angle of 25 degrees downward gaze and an accommodation demand of 2.5 D. Measures of palpebral aperture morphology during primary and downward gaze were also obtained using digital photography and analysed with customised software. RESULTS: Significant changes in corneal topography were observed after ten minutes of reading. Localised superior regions of corneal topographical change (a hyperopic shift in corneal power) were typically exhibited in both eyes following the near task. The mean change in the corneal sphero-cylinder was +0.02/-0.11 x 113 and +0.02/-0.06 x 68 for the more and less myopic eyes respectively for a 6 mm corneal diameter. A significantly greater change in corneal astigmatism power vector J0 (a larger increase in against the rule astigmatism) was observed in the more myopic eyes (p < 0.01 for a 6 mm diameter). The more and less myopic eyes exhibited a high degree of interocular symmetry for measures of palpebral aperture morphology during both primary and downward gaze. Changes in corneal power vectors following reading were associated with eyelid position during downward gaze. CONCLUSIONS: Changes in corneal topography observed following a controlled reading task were highly symmetrical between the fellow eyes of myopic anisometropes due to the interocular symmetry of the palpebral aperture. However, the more myopic eye did exhibit a small but significantly greater magnitude of change in corneal astigmatism compared to the less myopic eye following reading. These findings may have implications for understanding the mechanism of development of non-amblyopic myopic anisometropia.
Resumo:
PURPOSE: To examine the foveal retinal thickness (RT) and subfoveal choroidal thickness (ChT) between the fellow eyes of myopic anisometropes. METHODS: Twenty-two young (mean age 23 ± 5 years), healthy myopic anisometropes (≥ 1 D spherical equivalent [SEq] anisometropia) without amblyopia or strabismus were recruited. Spectral domain optical coherence tomography (SD-OCT) was used to capture images of the retina and choroid. Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers then manually determined the RT and ChT at the centre of the fovea from each SD-OCT image, which were then averaged. Axial length was measured using optical low coherence biometry during relaxed accommodation. RESULTS: The mean absolute SEq anisometropia was 1.74 ± 0.95 D and the mean interocular difference in axial length was 0.58 ± 0.41 mm. There was a strong correlation between SEq anisometropia and the interocular difference in axial length (r = 0.90, p < 0.001). Measures of RT and ChT were highly correlated between the two observers (r = 0.99 and 0.97 respectively) and in close agreement (mean inter-observer difference: RT 1.3 ± 2.2 µm, ChT 1.5 ± 13.7 µm). There was no significant difference in RT between the more (218 ± 18 µm) and less myopic eyes (215 ± 18 µm) (p > 0.05). However, the mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 µm) compared to the fellow, less myopic eye (286 ± 58 µm) (p < 0.001). There was a moderate correlation between the interocular difference in ChT and the interocular difference in axial length (r = -0.50, p < 0.01). CONCLUSIONS: Foveal RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of our anisometropic cohort. The interocular difference in ChT correlated with the magnitude of axial anisometropia.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
Purpose: The prevalence of refractive errors in children has been extensively researched. Comparisons between studies can, however, be compromised because of differences between accommodation control methods and techniques used for measuring refractive error. The aim of this study was to compare spherical refractive error results obtained at baseline and using two different accommodation control methods – extended optical fogging and cycloplegia, for two measurement techniques – autorefraction and retinoscopy. Methods: Participants comprised twenty-five school children aged between 6 and 13 years (mean age: 9.52 ± 2.06 years). The refractive error of one eye was measured at baseline and again under two different accommodation control conditions: extended optical fogging (+2.00DS for 20 minutes) and cycloplegia (1% cyclopentolate). Autorefraction and retinoscopy were both used to measure most plus spherical power for each condition. Results: A significant interaction was demonstrated between measurement technique and accommodation control method (p = 0.036), with significant differences in spherical power evident between accommodation control methods for each of the measurement techniques (p < 0.005). For retinoscopy, refractive errors were significantly more positive for cycloplegia compared to optical fogging, which were in turn significantly more positive than baseline, while for autorefraction, there were significant differences between cycloplegia and extended optical fogging and between cycloplegia and baseline only. Conclusions: Determination of refractive error under cycloplegia elicits more plus than using extended optical fogging as a method to relax accommodation. These findings support the use of cycloplegic refraction compared with extended optical fogging as a means of controlling accommodation for population based refractive error studies in children.
Resumo:
A calorimetric study has shown that glasses along the albite-diopside join in the system albiteanorthite-diopside have positive enthalpies of mixing. Thermodynamic calculations based on these data describe a nearly symmetric, metastable, subliquidus irascibility gap along the join with a critical temperature at 910 K. The existence of the miscibility gap was tested experimentally by annealing an Ab50Di50 glass at 748 K and 823 K. Annealed glasses were examined by optical microscopy and by scanning and transmission electron microscopy. The glasses showed morphological and chemical features consistent with unmixing of two glass phases. The apparent mechanism of phase separation involves initial spinodal decomposition followed by coarsening to produce 0.1 μm–0.3 μm spherical glass phases.
Resumo:
Surveys were conducted in the Philippines from 1995 to 1997 to examine relationships between production environment variables (agroecosystem, synchrony of planting, and varieties planted) and the occurrence of rice tungro disease epidemics using correspondence analyses. The sites covered were Isabela, Nueva Ecija, North Cotabato, and Bohol provinces as well as Bicol region. Tungro disease incidence in farmers’ fields was assessed visually based on typical symptoms. In addition, leaf samples were collected from each field and indexed serologically by enzyme-linked immunosorbent assay for the presence of Rice tungro bacilliform (RTBV) and Rice tungro spherical (RTSV) viruses. Thus, relationships between the production environment variables and four disease variables — visual incidence and double RTBV and RTSV, single RTSV, and single RTBV infections — were examined. A higher association was observed between site and varieties planted as well as site and synchrony of planting than between site and agroecosystem or site and disease variables (visual incidence, double RTBV and RTSV and single RTSV infections). Disease variables depended on both varieties planted and synchrony of planting and correspondence analysis revealed that the low disease incidence in Nueva Ecija was associated with synchronous planting while the high disease incidence in Isabela was associated with the planting of susceptible varieties and asynchronous planting. Such findings suggest that the relationship between the last two factors at a given site is critical to predicting tungro occurrence. Moreover, correspondence analysis of the relationship among disease variables revealed that tungro incidence is associated with not only double RTBV and RTSV infections but also single RTSV infections. Implications of these results on tungro epidemiology and management are discussed.