989 resultados para Sparre, Erik, count.
Resumo:
The performance of a 112Gbit/s dual-carrier DP-16-QAM channel in various WDM configurations is characterized. Variations of the dispersion map, ROADM count and system length are experimentally evaluated and compared with numerical simulation. © 2012 OSA.
Resumo:
A novel method for designing high channel-count fiber Bragg gratings (FBGs) is proposed. For the first time, tailored group delay is introduced into the target reflection spectra to obtain a more even distribution of the refractive index modulation. This approach results in the reduction of the maximum refractive index modulation to physically realizable levels. The maximum index modulation reduction factors are all greater than 5.5. This is a significant improvement compared with previously reported results. Numerical results show that the thus designed high channel-count FBG filters exhibit superior characteristics including 30 dB channel isolation, a flat-top and near 100% reflectivity in each channel. © 2012 Optical Society of America.
Resumo:
A novel method of fiber Bragg grating design based on tailored group delay is presented. The method leads to designs that are superior to the previously reported results. © OSA 2012.
Resumo:
We characterize the preference domains on which the Borda count satises Arrow's "independence of irrelevant alternatives" condition. Under a weak richness condition, these domains are obtained by xing one preference ordering and including all its cyclic permutations ("Condorcet cycles"). We then ask on which domains the Borda count is non-manipulable. It turns out that it is non-manipulable on a broader class of domains when combined with appropriately chosen tie-breaking rules. On the other hand, we also prove that the rich domains on which the Borda count is non-manipulable for all possible tie-breaking rules are again the cyclic permutation domains.
Resumo:
We characterize the preference domains on which the Borda count satisfies Maskin monotonicity. The basic concept is the notion of a "cyclic permutation domain" which arises by fixing one particular ordering of alternatives and including all its cyclic permutations. The cyclic permutation domains are exactly the maximal domains on which the Borda count is strategy-proof when combined with every possible tie breaking rule. It turns out that the Borda count is monotonic on a larger class of domains. We show that the maximal domains on which the Borda count satisfies Maskin monotonicity are the "cyclically nested permutation domains" which are obtained from the cyclic permutation domains in an appropriately specified recursive way. ------ *We thank József Mala for posing the question of Nash implementability on restricted domains that led to this research. We are very grateful to two anonymous referees and an associate editor for their helpful comments and suggestions. The second author gratefully acknowledges financial support from the Hungarian Academy of Sciences (MTA) through the Bolyai János research fellowship.
Resumo:
This study investigated the effect of the number of syllables and the word frequency of the words in the reading passages, the question stems, and the answer options of easy and difficult reading comprehension items. Significant differences were found for the easy and difficult items.
Resumo:
While simple guest surveys can be poorly constructed with little negative consequences, often surveys are used in making important policy decisions. Researchers and policy makers must carefully construct their research instruments in order to avoid biases which may result in muddled or incorrect responses. The authors review the process of creating, administering, and analyzing surveys with an eye toward reducing survey bias to a minimum. Reliable results require a rigorous and careful approach when creating and using instruments.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
Objectives: To measure the step-count accuracy of an ankle-worn accelerometer, a thigh-worn accelerometer and one pedometer in older and frail inpatients. Design: Cross-sectional design study. Setting: Research room within a hospital. Participants: Convenience sample of inpatients aged ≥65 years, able to walk 20 metres unassisted, with or without a walking-aid. Intervention: Patients completed a 40-minute programme of predetermined tasks while wearing the three motion sensors simultaneously. Video-recording of the procedure provided the criterion measurement of step-count. Main Outcome Measures: Mean percentage (%) errors were calculated for all tasks, slow versus fast walkers, independent versus walking-aid-users, and over shorter versus longer distances. The Intra-class Correlation was calculated and accuracy was visually displayed by Bland-Altman plots. Results: Thirty-two patients (78.1 ±7.8 years) completed the study. Fifteen were female and 17 used walking-aids. Their median speed was 0.46 m/sec (interquartile range, IQR 0.36-0.66). The ankle-worn accelerometer overestimated steps (median 1% error, IQR -3 to 13). The other motion sensors underestimated steps (40% error (IQR -51 to -35) and 38% (IQR -93 to -27), respectively). The ankle-worn accelerometer proved more accurate over longer distances (3% error, IQR 0 to 9), than shorter distances (10%, IQR -23 to 9). Conclusions: The ankle-worn accelerometer gave the most accurate step-count measurement and was most accurate over longer distances. Neither of the other motion sensors had acceptable margins of error.