973 resultados para Soybean oil waste


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis analyses the potential of wood biochar as an adsorbent in removal of sulphate from produced water. In worldwide offshore oil and gas industry, a large volume of waste water is generated as produced water. Sulphur compounds present in these produced water streams can cause environmental problems, regulatory problems and operational issues. Among the various sulphur removal technologies, the adsorption technique is considered as a suitable method since the design is simple, compact, economical and robust. Biochar has been studied as an adsorbent for removal of contaminants from water in a number of studies due to its low cost, potential availability, and adsorptive characteristics. In this study, biochar produced through fast pyrolysis of bark, hardwood sawdust, and softwood sawdust were characterized through a series of tests and were analysed for adsorbent properties. Treating produced water using biochar sourced from wood waste is a two-fold solution to environmental problems as it reduces the volume of these wastes. Batch adsorption tests were carried out to obtain adsorption capacities of each biochar sample using sodium sulphate solutions. The highest sulphur adsorption capacities obtained for hardwood char, softwood char and bark char were 11.81 mg/g, 9.44 mg/g, and 7.94 mg/g respectively at 10 °C and pH=4. The adsorption process followed the second order kinetic model and the Freundlich isotherm model. Adsorption reaction was thermodynamically favourable and exothermic. The overall analysis concludes that the wood biochar is a feasible, economical, and environmental adsorbent for removal of sulphate from produced water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil spills in marine environments often damage marine and coastal life if not remediated rapidly and efficiently. In spite of the strict enforcement of environmental legislations (i.e., Oil Pollution Act 1990) following the Exxon Valdez oil spill (June 1989; the second biggest oil spill in U.S. history), the Macondo well blowout disaster (April 2010) released 18 times more oil. Strikingly, the response methods used to contain and capture spilled oil after both accidents were nearly identical, note that more than two decades separate Exxon Valdez (1989) and Macondo well (2010) accidents.

The goal of this dissertation was to investigate new advanced materials (mechanically strong aerogel composite blankets-Cabot® Thermal Wrap™ (TW) and Aspen Aerogels® Spaceloft® (SL)), and their applications for oil capture and recovery to overcome the current material limitations in oil spill response methods. First, uptake of different solvents and oils were studied to answer the following question: do these blanket aerogel composites have competitive oil uptake compared to state-of-the-art oil sorbents (i.e., polyurethane foam-PUF)? In addition to their competitive mechanical strength (766, 380, 92 kPa for Spaceloft, Thermal Wrap, and PUF, respectively), our results showed that aerogel composites have three critical advantages over PUF: rapid (3-5 min.) and high (more than two times of PUF’s uptake) oil uptake, reusability (over 10 cycles), and oil recoverability (up to 60%) via mechanical extraction. Chemical-specific sorption experiments showed that the dominant uptake mechanism of aerogels is adsorption to the internal surface, with some contribution of absorption into the pore space.

Second, we investigated the potential environmental impacts (energy and chemical burdens) associated with manufacturing, use, and disposal of SL aerogel and PUF to remove the oil (i.e., 1 m3 oil) from a location (i.e., Macondo well). Different use (single and multiple use) and end of life (landfill, incinerator, and waste-to-energy) scenarios were assessed, and our results demonstrated that multiple use, and waste-to-energy choices minimize the energy and material use of SL aerogel. Nevertheless, using SL once and disposing via landfill still offers environmental and cost savings benefits relative to PUF, and so these benefits are preserved irrespective of the oil-spill-response operator choices.

To inform future aerogel manufacture, we investigated the different laboratory-scale aerogel fabrication technologies (rapid supercritical extraction (RSCE), CO2 supercritical extraction (CSCE), alcohol supercritical extraction (ASCE)). Our results from anticipatory LCA for laboratory-scaled aerogel fabrication demonstrated that RSCE method offers lower cumulative energy and ecotoxicity impacts compared to conventional aerogel fabrication methods (CSCE and ASCE).

The final objective of this study was to investigate different surface coating techniques to enhance oil recovery by modifying the existing aerogel surface chemistries to develop chemically responsive materials (switchable hydrophobicity in response to a CO2 stimulus). Our results showed that studied surface coating methods (drop casting, dip coating, and physical vapor deposition) were partially successful to modify surface with CO2 switchable chemical (tributylpentanamidine), likely because of the heterogeneous fiber structure of the aerogel blankets. A possible solution to these non-uniform coatings would be to include switchable chemical as a precursor during the gel preparation to chemically attach the switchable chemical to the pores of the aerogel.

Taken as a whole, the implications of this work are that mechanical deployment and recovery of aerogel composite blankets is a viable oil spill response strategy that can be deployed today. This will ultimately enable better oil uptake without the uptake of water, potential reuse of the collected oil, reduced material and energy burdens compared to competitive sorbents (e.g., PUF), and reduced occupational exposure to oiled sorbents. In addition, sorbent blankets and booms could be deployed in coastal and open-ocean settings, respectively, which was previously impossible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soybean is the grain in which greater food dependency has Mexico, reason why as of 2008, the government has promoted his culture, granting excellent subsidies, as much to producers as to buyers of the grain, thus contributing to a recent process of expansion in certain states, as it happens in Campeche. The objetive of this article is the analysis of the characteristics and effects of those supports, as well as of the rest of factors that until today they have taken to the producers of the mentioned state to initiate or to expand the cultivation of the soybean. The findings of the investigation reveal that although the producers have improved their levels of income, the process is vulnerable, as it depends on variables like the governmental supports, the international prices of the soybean and exchange rate. Although the study of the negative effects of genetically modified soybeans (GM) in other areas (environment, biodiversity, deforestation, human and animal health) is not the purpose of this investigation, some information will be provided, as on the conflict between soybean producers and beekeepers in the state of Campeche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, several major food safety crises originated from problems with feed. Consequently, there is an urgent need for early detection of fraudulent adulteration and contamination in the feed chain. Strategies are presented for two specific cases, viz. adulterations of (i) soybean meal with melamine and other types of adulterants/contaminants and (ii) vegetable oils with mineral oil, transformer oil or other oils. These strategies comprise screening at the feed mill or port of entry with non-destructive spectroscopic methods (NIRS and Raman), followed by post-screening and confirmation in the laboratory with MS-based methods. The spectroscopic techniques are suitable for on-site and on-line applications. Currently they are suited to detect fraudulent adulteration at relatively high levels but not to detect low level contamination. The potential use of the strategies for non-targeted analysis is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Problem: Sustainability reporting is a growing trend in the society. One of the most exposed industries to environmental matters is the oil and gas industry, which commit to sustainability reporting in order to deal with the industry’s destructive operations. The Global Reporting Initiative (GRI) provides voluntary guidelines in sustainability reporting, which increase transparency for the company’s stakeholders. However, it is controversial that the oil and gas industry put a great effort into sustainability reporting even though the industry is environmentally destructive. This gap is interesting to investigate and will contribute to the academic discussion. Therefore, this thesis will focus on the sustainability reporting in the oil and gas industry and to what extent the industry actually discloses material environmental information about their operations. Purpose: The purpose of this thesis is to examine how the sustainability reporting has changed in the oil and gas industry in Europe. This is performed from a stakeholder perspective. Further, it aims to investigate how oil and gas companies have followed the GRI guidelines and how the reporting has changed over time. Method: A quantitative method is used in order to answer the research questions. The data sample is based on oil and gas companies reporting according to the GRI framework during year 2012 to year 2014. The empirical data is gathered from the studied companies’ environmental category in their sustainability reports. Further, a content analysis technique, with a coding scheme, was set up to interpret and analyse the information. To enable an easy overview of the findings, the relevant data is presented in tables and diagrams. Empirical Findings and Conclusion: The majority of the studied companies have increased their level of compliance in the environmental category. Although, the majority of the companies have increased their reporting, the compliance level differs between the companies. The most reported sectors are the; “Water”, “Biodiversity”, “Emissions”, “Effluents and Waste”, “Compliance”, and “Overall”. Further, the empirical findings show that there is an overall increase in the amount of disclosed information per indicator. The conclusion of this thesis is that the environmental disclosures have increased in the oil and gas industry from year 2012 to 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years the need to develop more environmentally friendly and efficient cars as led to the development of several technologies to improve the performance of internal combustion engines, a large part of the innovations are focused in the auxiliary systems of the engine, including, the oil pump, this is an element of great importance in the dynamics of the engine as well a considerable energy consumer. Most solutions for oil pumps to this day are fixed displacement, for medium and high speeds, the pump flow rate is higher than the needs of the engine, this excess flow leads to the need for recirculation of the fluid which represents a waste of energy. Recently, technological advances in this area have led to the creation of variable displacement oil pumps, these have become a 'must have' due to the numerous advantages they bring, although the working principle of vane or piston pumps is relatively well known, the application of this technology for the automotive industry is new and brings new challenges. The focus of this dissertation is to develop a new concept of variable displacement system for automotive oil pumps. The main objective is to obtain a concept that is totally adaptable to existing solutions on the market (engines), both dimensionally as in performance specifications, having at the same time an innovative mechanical system for obtaining variable displacement. The developed design is a vane pump with variable displacement going in line with existing commercial solutions, however, the variation of the eccentricity commonly used to provide an variable displacement delivery is not used, the variable displacement is achieved without varying the eccentricity of the system but with a variation of the length of the pumping chamber. The principle of operation of the pump is different to existing solutions while maintaining the ability to integrate standard parts such as control valves and mechanical safety valves, the pump is compatible with commercial solutions in terms of interfaces for connection between engine systems and pump. A concept prototype of the product was obtained in order to better evaluate the validity of the concept. The developed concept represents an innovation in oil pumps design, being unique in its mechanical system for variable displacement delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document describes the kinds of items accepted for recycling at Lexington County recycling centers.