1000 resultados para Southwest atlantic
Resumo:
Sediment Core MD01-2454G SW Rockall BANK 747m water depth on Logatechev Mounds (Core was taken during Marion Dufresne Cruise Geosciences 2001 at 55°31'N and 15°39'W) ENAM corals from BoxCores of SW Rockall Bank and Porcupine Bank water depth 725 and 750m (Box cores ENAM 9915 and ENAM 9910 were taken from 725 m bsl on the Southwest Rockall Bank (55,32°N, 15,40°W), and ENAM 9828 from 745 m bsl on the Porcupine Bank (53,48°N, 13,54°W))
Resumo:
The stratigraphy and paleoceanography of the late Miocene and early Pliocene have been examined at six sites in the South Atlantic and southwest Pacific oceans: Deep Sea Drilling Project (DSDP) sites 284, 516A, 519, 588, and 590 and two piston cores from Chain cruise 115. A consistent stratigraphy was developed among sites using graphic correlation, which resulted in age models for all sites that are tied to the revised paleomagnetic time scale of Berggren et al. (1985). Applying these chronologies, we assessed latitudinal and interocean contrasts in the stratigraphic ranges of late Miocene-early Pliocene planktonic foraminiferal and nanno - fossil datums. Salient stratigraphic results include (1) The last appearance datum (LAD) of Globoquadrina dehiscens is a late Miocene (approx. 6.4 Ma) event in the subtropics and is not useful for the placement of the Miocene/Pliocene (M/P) boundary in this biogeographic province. (2) The first appearance datum (FAD) of Globorotalia crassaformis occurred at 5.1 Ma in the South Atlantic near the M/P boundary, suggesting that Gr. crassaformis may have first evolved in the South Atlantic and later migrated to other regions. (3) In the southwest Pacific, the FADs of Gr. margaritae (5.97 Ma), Gr. puncticulata (5.09 Ma), and Gr. crassaformis (4.87 Ma) are significantly time transgressive between temperate and warm subtropical regions. Time lags of 1.0 m.y. were required for these species to adapt to physical and/or biotic conditions peripheral to their endemic biogeographic provinces. (4) Between the subtropics of the South Atlantic and southwest Pacific, many planktonic foraminiferal datums (FAD of Dentogloboquadrina altispira, Gr. cibaoensis, Gr. conomiozea, Gr. margaritae, and Gq. dehiscens and LAD of Gr. cibaoensis) markedly depart from the correlation suggested by magnetostratigraphy, indicating that these datum levels are unreliable for correlation between these ocean basins. (5) In contrast, available calcareous nannofossil datum levels fall on or near the paleomagnetic correlation line, indicating synchroneity of events within the subtropics. (6) Biostratigraphic, magnetic, and 87Sr/86Sr correlation between sites 588 and 519 and the M/P neostratotype at Capo Rossello, Sicily, suggests that the base of the Zanclean stratotype occurs at 5.1-5.0 Ma in the lower reversed subchron of the Gilbert, about 2-3 * 10**5 years above the Gilbert/Chron 5 boundary. Oxygen isotopic results from DSDP sites 284, 519, and CH115 piston cores confirm a prolonged benthic d18O increase in the latest Miocene between 5.6 and 5.0 Ma, as originally proposed by Shackleton and Kennett (1975). At DSDP site 588, the benthic d18O record in the latest Miocene is marked by high-frequency fluctuations with amplitude variations of 0.5per mill, and a long-period wavelength component of 400,000 years. Maximum d18O values, however, occurred during the late Miocene (Kapitean Stage) between 5.5 and 5.1 Ma. The late Miocene d18O changes resulted from mid- and high-latitude cooling and pulses of ice sheet expansion and contraction. Glacial events were most intense during the latest Miocene (Kapitean Stage), and occurred at 5.50-5.35 Ma and at 5.10 Ma. Glacial events are estimated to have lowered sea level by 40 to 60 m and contributed to the isolation and desiccation of the Mediterranean Basin during the late Messinian. Interglacial conditions prevailed at 5.2 Ma and between 5.0 and 4.1 Ma in the early Pliocene. The beginning of the Pliocene was marked by changes in many proxy climatic indicators at all sites, suggesting a prolonged interval of warm, interglacial conditions between 5.0 and 4.1 Ma during the earliest Pliocene.
Resumo:
Absolute ages of plutonic rocks from mid-ocean ridges provide important constraints on the scale, timing and rates of oceanic crustal accretion, yet few such rocks have been absolutely dated. We present 206Pb/238U SHRIMP zircon ages from two ODP Drill Holes and a surface sample from Atlantis Bank on the Southwest Indian Ridge. We report ten new sample ages from 26-1430 m in ODP Hole 735B, and one from 57 m in ODP Hole 1105A. Including a previously published age, eleven samples from Hole 735B yield 206Pb/238U zircon crystallization ages that are the same, within error, overlap with the estimated magnetic age and are inferred to date the main period of crustal growth, the average age of analyses is 11.99 ± 0.12 Ma. Any differences in the ages of magmatic series and/or tectonic blocks within Hole 735B are unresolvable and eight well-constrained ages vary from 11.86 ± 0.20 Ma to 12.13 ± 0.21 Ma, a range of 0.27 ± 0.29 Ma, consistent with the duration of crustal accretion observed at the Mid-Atlantic Ridge. An age of 11.87 ± 0.23 Ma from Hole 1105A is within error of ages from Hole 735B and permits previous correlations made between zones of oxide-rich gabbros in each hole. Pb/U zircon ages > 0.5 Ma younger than the magnetic age are recorded in at least three samples from Atlantis Bank, one from Hole 735B and two collected along a fault scarp to the East. These young ages may date one or more off-axis events previously suggested from thermochronologic data and support the interpretation of a complex geological history following crustal accretion at Atlantis Bank. Together with results from the surface of Atlantis Bank, dating has shown that while the majority of Pb/U SHRIMP zircon ages record the short-lived (< 0.5 Ma) phase of crustal accretion on-axis, results from several samples precede and post-date this period by > 1 Ma suggesting a complex and prolonged magmatic/tectonic history for the crust at Atlantis Bank.
Resumo:
The aim of the present study is an evaluation of the applicability of biogenic barium as a proxy for productivity. For this purpose, 190 surface sediment samples from the South Atlantic Ocean were analysed for their barium and aluminium concentrations. Biogenic barium is estimated by subtracting the calculated terrigenous barium (obtained from the terrigenous Ba/Al ratio and the amount of Al in the sample) from the total Ba content in the sample. Based on the accumulation rates of biogenic barium, export production is estimated using three different algorithms proposed by [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181; Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021; Geomar. Report 38 (1995) 105]. Primary productivity was calculated from these different export productions and compared with measurements of recent primary productivity in the overlying surface waters. Only the primary productions calculated on the basis of the algorithm of [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181] yield productivity values comparable to those existing in ocean surface waters. This study further reveals that it is not sufficient to use a constant, generally applicable organic carbon/biogenic barium ratio, as is postulated by [Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021]. This ratio has to be assessed regionally. For the sediments of the Cape Basin in the eastern South Atlantic Ocean, a new algorithm is developed which gives plausible primary productivities for the overlying surface waters.
Resumo:
Stable isotope records were generated for a late Pliocene-early Pleistocene interval from Ocean Drilling Program (ODP) Site 1123 in the southwest Pacific (41°47 S, 171°30 W; 3290 m water depth). Based on these data, new revisions were made to the shipboard splice and composite section. The isotope records will be used to evaluate the influence of North Atlantic and Southern Ocean deepwater masses on water entering the Pacific in the Deep Western Boundary Current. Three holes were cored at Site 1123, yielding a complete composite section over approximately the last 4.7 m.y. A representative spliced record ("the splice") was developed aboard ship based on magnetic susceptibility, gamma ray attenuation bulk density, and percent reflectance data from the three adjacent holes (Carter, McCave, Richter, Carter, et al., 1999, doi:10.2973/odp.proc.ir.181.2000). No gaps in the sedimentary record were detected for the multiple-cored section of Site 1123. In addition to the isotope data, postcruise revisions to the splice and composite section based on stable isotope data are described here.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of 'teleconnection' between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20-10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated C-14 ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Estuaries are dynamic on many spatial and temporal scales. Distinguishing effects of unpredictable events from cyclical patterns can be challenging but important to predict the influence of press and pulse drivers in the face of climate change. Diatom assemblages respond rapidly to changing environmental conditions and characterize change on multiple time scales. The goals of this research were to 1) characterize diatom assemblages in the Charlotte Harbor watershed, their relationships with water quality parameters, and how they change in response to climate; and 2) use assemblages in sediment cores to interpret past climate changes and tropical cyclone activity. ^ Diatom assemblages had strong relationships with salinity and nutrient concentrations, and a quantitative tool was developed to reconstruct past values of these parameters. Assemblages were stable between the wet and dry seasons, and were more similar to each other than to assemblages found following a tropical cyclone. Diatom assemblages following the storm showed a decrease in dispersion among sites, a pattern that was consistent on different spatial scales but may depend on hydrological management regimes. ^ Analysis of sediment cores from two southwest Florida estuaries showed that locally-developed diatom inference models can be applied with caution on regional scales. Large-scale climate changes were suggested by environmental reconstructions in both estuaries, but with slightly different temporal pacing. Estimates of salinity and nutrient concentrations suggested that major hydrological patterns changed at approximately 5.5 and 3 kyrs BP. A highly temporally-resolved sediment core from Charlotte Harbor provided evidence for past changes that correspond with known climate records. Diatom assemblages had significant relationships with the three-year average index values of the Atlantic Multidecadal Oscillation and the El Niño Southern Oscillation. Assemblages that predicted low salinity and high total phosphorus also had the lowest dispersion and corresponded with some major storms in the known record, which together may provide a proxy for evidence of severe storms in the paleoecological record. ^